Oblivious Routing and Minimum Bisection

Markus Kaiser

Technische Universitit Miinchen
markus.kaiser@in.tum.de

Abstract. Oblivious routing is generalization of multi commodity flows
where the actual demand function is unknown. This paper proofs the
existence of an approximate solution using tree metrics which can easily
be transformed into an O(logn) approximation algorithm. This result
is then applied to the minimum bisection problem asking for an vertex
bisection with minimal cost in the edges between the sets, also resulting
in an O(logn) approximation.

1 Oblivious Routing

Maximum flow is a well understood algorithmic problem. Given a directed graph
G = (V,E), a mapping ¢ : E — R denoted by c. = c(e) assigning a maximum
non-negative capacity to every edge and a source and target node s,t € V, we
are asked to find a flow of maximum value from s to ¢. For simplicity, we assume
that G is complete, which can be achieved by adding edges of capacity 0.

Definition 1 (Flow [CLRSO01]). A function f : E — R{ assigning a through-
put to every edge. It satisfies the following two properties:

Capacity Constraint: For all e € E, we have f. < c,.
Flow Conservation: For allv € V' \ {s,t}, we have

Z qu: Z fv'w~

(u,v)EE (vyw)eEE
We denote f. = f(e) fore € E and fu, == f(u,v) for u,v € V.

The maximum flow problem can be solved in polynomial time using a num-
ber of algorithms, for example the Ford-Fulkerson method or Push-relabel algo-
rithms, both of which are described in [CLRS01].

This paper will introduce a generalization of this problem known as oblivious
routing and proof the existence of an O(logn) approximation algorithm based
on [R&c08| and described in [WS11]. After giving a definition of the problem, it
is formulated as a linear problem and rewritten to yield the desired algorithm
using a theorem giving an O(log n) approximation of arbitrary metrics using tree
metrics. Finally, the result is applied to give an O(logn) approximation of the
minimum bisection problem.

mailto:markus.kaiser@in.tum.de
mailto:markus.kaiser@in.tum.de

Agreen =0.25 Apue =05 Apeg = 0.25

Fig. 1. A solution to the oblivious routing problem gives a set of paths and an asso-
ciated convex combination for any two nodes u,v € V. In this case, we are given the
green, blue and red paths from u to v. The dashed demand d.,,, gets routed along these
three paths, split according to the factors ;.

1.1 Problem definition

To define oblivious routing, we first consider a simpler generalization of max-
imum flow, the multi-commodity flow problem. Instead of a single source and
target node, we now allow an arbitrary number of nonnegative flow demands
between two nodes given by a demand function d : V2 — Rg on an undirected
graph. Every such demand d,, must be routed from u to v using a set of u-
v-paths and the total flow f. on an edge e € F is the sum of all demands
routed through it. The task of is now to find a flow satisfying all demands while
exceeding the capacities of all edges as little as possible. This excess is called
congestion.

Definition 2 (Congestion). The congestion p attributed to a flow f denotes
the smallest factor p such that for all edges e € E we have f. < p - ce.

€
Py
This problem is still solvable in polynomial time using linear programming
[WST11]. One more generalization leads to the oblivious routing problem. We
now want to find flow solutions without knowing the demands beforehand, i.e.
we want to find a set of u-v-paths and associated fractions of demands for all
u,v € V such that for any demand function this set of paths performs well.

Problem 1 (Oblivious Routing). Given an undirected Graph G = (V, E) and an
edge capacity function ¢ : E — R¥. Calculate a convex combination of paths
for each (u,v) € V2 such that for any demand function the congestion of the
resulting flow will be as small as possible.

Fig. 2. Removing the edge er from the green spanning tree introduces a tree split.
One of the two vertex sets we denote as S(er) and define the capacity of the split as
the sum of all capacities of edges crossing the boundary of S(er), the blue and orange
edges.

1.2 Formulation as a linear program

To find the desired approximation algorithm, we must first develop some lower
bound for the optimal solution. A simple idea to create a valid (but probably
not optimal) solution is to find any spanning tree T = (V, Er) of G and route
any demand along its edges.

Since it is a spanning tree, there is a unique path from any vertex u to any
vertex v in 1" which will be used to satisfy the complete demand. For any edge
er € Er the resulting flow f., will be the sum of all demands between two nodes
connected by this tree edge. These are exactly the nodes in different connected
components created by removing the edge er.

Definition 3 (Tree Split). Given a tree T = (V,Er) and an edge er € Er.
Removing er from T splits it into two connected components, one of which we
call S(er) and the other one being V' \ S(er).

We call C(er) the capacity and D(er) the demand of this split given by
the sum of all capacities and demands connecting nodes in different connected

components.
C(GT) = Z Cuv

ueS(er),
vgS(er)
D(eT) = Z Cyv
ueS(er),
vgS(er)

This definition illustrated by [Fig. 2allows us to write the flow generated by a
simple solution to oblivious routing using a spanning tree T as f.,. = D(er) for
all ep € T and 0 otherwise. We now observe that for a given demand function
any solution to the resulting multi-commodity flow problem will be bounded
below by all tree splits.

Lemma 1. For any tree T and any tree edge e, any routing in G must contain
an edge e with congestion

D(er)
Cler)

Therefore, the optimal congestion p* of the flow problem can be no better.

Pe =

We will use this observation to proof our approximation guarantee. Suppose
we find a spanning tree such that every edge has capacity of the capacity of the
corresponding tree split divided by some factor o > 1.

1
Ver € Ep. cep > —Cler)
a

Using we can bound the congestion of this spanning tree in relation
to the optimal solution.

_ D(er)
pr = max
er Cep

D(eT)
<
=GN Cler)

< ap*

Note that this factor « is a property of the tree and not any specific demand
function, thus we know that this tree yields a solution of cost at most « times
the optimal solution for any demand.

This tree however does not have to exist and therefore this approach will not
yield any approximation guarantee. Since oblivious routing allows us to define
multiple u-v-paths, a natural extension is to consider not only one spanning tree
but a convex combination of multiple spanning trees. We denote each of these
trees as some T; = (V, Er,) and identify e € Ep, with e € T; for compactness.
Solutions of this kind are a set of trees and factors {(T;, A;)} with A; > 0 and
YA =1

For a given demand function, the demand d,,, is routed through the unique
u-v-paths in the trees T; according to the convex fractions. For every edge e in
the original graph we get

fe=">_ AiDi(e)
e,
where we denote the demand of the split introduced by T; using some edge e € T;
as D;(e).

This solution scheme is still too strict though and we want to allow more
sophisticated structures. Instead of using the spanning trees directly, we interpret
every node on a u-v-path of T; as an intermediate point on a path from u to v.
Instead of using the direct connections given by the tree edges to traverse the
intermediate points, we are allowed to take any path in G. A pair of spanning
tree and set of paths connecting two neighboured nodes in the tree is called a
path tree.

Fig. 3. A path tree is a pair of a spanning tree T' and a mapping P from its edges to
arbitrary paths in G. Instead of routing the demand d,. along the green tree edges,
the edge (z, z) is replaced by the blue edges P((z, 2)) = ((z,v), (y, 2)).

Definition 4 (Path Tree). A path tree of an undirected graph G = (V, E) is
a pair (T, P) of a spanning tree T of G and a function P : Epr — E identifying
every edge ep = (x,y) of T with a path in G from x to y.

Note that the same edge in G may well be used by multiple different paths
in the same path tree. To now route any demand d,,, using a path tree, we move
along the unique u-v-path in the tree and stitch together the paths corresponding
to the edges in the path.

Since if routing with spanning tree T; the flow through every tree edge er
would be D;(T;), the same amount of flow must now be added to every edge on
the path P;(er). If we now consider a convex combination of path trees, the flow
through every edge e € F is

fezz)\i Z D;(er).
i er€T;:
e€P;(er)

Suppose we find a set of path trees such that

Vee E. ¢, > éZ)\z Z C’i(eT)

er€T;:
e€P;(er)

we can again bound its congestion by the optimal solution using

-~ Je
p= max —
e Ce
YiNiY. erers: Diler)
< aomax c€Pi(er)

e YAy erer: Ci(er)

ecP;(er)

D.
< amax max ile)

e i Cile)

< ap”

We will now show that there always is a solution using path trees such that
a € O(logn) and sketch how to find such a set of trees. We denote the finite but
exponentially sized set of all path trees over G as Z. We can then formulate a
linear program which enforces the assumption that every edge capacity is large
enough and chooses a set of path trees such that « is minimal.

i 1
e W
s. t. Z)‘i Z Ci(er) < acyy Yu,v eV

i€ er€Ty:

(u,v)EP;(er)

To gain an O(logn) approximation algorithm from this linear program, we
have to show that « is of at most logarithmic size and that it is possible to solve
this linear program with exponentially sized sums in polynomial time, yielding
a solution of polynomially many path trees.

1.3 Approximation guarantee using the dual

To proof the bound for the value of the linear program, we will consider the dual
program and show that it is logarithmically bounded. The dual problem has
exponentially many constraints, one for each path tree, and a decision variable
lyy € L for every pair of vertices.

max z

z,L

S. t. E Cuvlun =1
u,veV

2< Y Ciler) Y lw Vi€Z (2)

er €Ty (u,v)EP;(er)
L>0

We will rewrite this dual program to be able to apply a result about the
approximation of metrics with tree metrics. To this end we will interpret the
variables {,, as distances between vertices and obtain a shortest path metric
d¢(u,v) which we will approximate later. For an edge e = (z,y) we denote
de(e) = do(z,y).

We first observe that infor any given 4, the length of P;(er) is always
at least dy(er) and since all constraints bound z above and there is some tree
choosing the shortest path, we can replace the constraints by

z < Z C’i(eT)dg(eT) VieT.

er€T;

We can further reduce the constraints to the smallest constraint, again because
we are bounding z above.
z < min Ci(er)de(er)
i€Z
ereT;

Since we are only left with one constraint concerning z and it is not otherwise
needed in the dual program we can move it into the objective function and
obtain a smaller LP. While it is no longer of exponential size, it might still take
exponential time to find the minimum.

max min Ci(er)de(er)
er€T;
s. t. Z Cuvgu'u =1
u,veV
L>0

While the nonnegativity of the distances is actually desired, we now want to
show that the last remaining constraint does not in fact reduce the solution space.
Suppose Zu,veV Cuvlun = B > 0, the products of of capacities and lengths sum
up to an arbitrary positive value. We can then transform the set of lengths £ to a
feasible solution of the dual problem by scaling every length by % This, however,
changes the objective function by the same factor. If we drop the constraint
enforcing # = 1, we have to divide the objective function by 3. This yields a
rather compact representation of the dual program.

. Yeper, Ciler)de(er)
max min

L icZ Zu,vGV Cuvluw

s.t. £L>0

(3)

To proof the desired approximation guarantee we now approximate d, using
a result obtained about tree metrics from [WS11].

Theorem 1 (Tree Metric). For any nonnegative set of costs cy, and any
metric dy there exists a tree metric (V, M) such that

de(u,v) < My, Yu,v € V

> cuwMuy < O(ogn) D cuvdy(u, v).

u,veV u,veV

To be able to apply this result to our dual, we first need to show one more
lemma. We need to rewrite the enumerator in to not sum over tree edges
but all edges in the graph.

Lemma 2. Let T be a spanning tree and (V, M) a tree metric of G = (V, E).
Then it holds that

Z C(xay)Mwy: Z cuvMuu-

(z,y)EET (u,v)EE

Fig. 4. The left hand side contains a product of capacity cy.., and distance Mgp iff cuo
is part of the tree split introduced by the tree edge (a,b). A capacity is part of a tree
split iff © and v are not in the same connected component in the split. This is the case
iff the tree edge lies on the path between u and v. The sum of all tree edges between
uw and v is My, by definition, yielding the right hand side of the sum.

Proof. See O

Combining all observations and lemmas now bounds the value of both linear
programs logarithmically, directly following from the logarithmic bound of the
tree metrics.

Theorem 2. The primal and dual linear program have a value of O(logn).

Proof. We proof the value of the dual program, the value of the primal program
then follows by strong duality.

For any lengths £ we know that for the minimizing tree inwe have the
following chain of inequalities, using the definition of tree metrics, the previous
lemma and the observation that the distance dy(u,v) is never larger than ¢,
since dy is a shortest path metric.

Z Ci(er)de(er) < Z Ci(er) M.,

er€T; er€T;

Z C’U.U MU’U

u,veV

< O(logn) Z Cuvde(u, v)

u,veV

< O(logn) Z Cuvluv

u,veV

Dividing by the sum directly gives the value guarantee:

>erer; Ciler)deler)
Zu,vGV c’“’&“’

< O(logn)

S

Fig.5. The cost ¢(6(S5)) of the bisection S is defined as the sum of the nonnegative
costs of all orange edges leaving the set S.

While this proofs the existence of a solution of value O(log n), it still remains
to be shown that polynomially many trees are enough and the solution can
actually be found in polynomial time. While this is done rigorously in [WST1],
the idea is to rewrite the linear program in such a way to not actually search
for the minimal « but enforce an o € O(logn). This results in a linear program
which can be solved using the ellipsoid method in polynomial time resulting in
a set of polynomially many path trees. This then proofs the existence of the
desired O(logn) approximation algorithm.

2 Minimum Bisection

The knowledge about the existence of an O(logn) approximation algorithm for
the oblivious routing problem can be applied to find approximation algorithms
for a number of other problems, some of which are described in [Rac08]. As an
example, we will now give a definition of the minimum bisection problem and
show that it can be approximated using oblivious flow.

Minimum bisection has a similar structure to oblivious flow as it is also de-
fined over undirected graphs with a function mapping the edges to non negative
numbers. Instead of interpreting these numbers as a capacity, they are now un-
derstood as costs. We want to find a set containing half of the vertices such that
the sum of all costs of edges leaving this set is minimal.

Problem 2 (Minimum Bisection). Given an undirected Graph G = (V, E) and
an edge-cost function ¢ : E — R{. Find a set S C V containing half the vertices
with minimal split cost ¢(4(5)).

6(8)={(z,y) e E|rxe SNy ¢S}
c(6(8) = Y ce

ecl:
e€d(S)

We will now show that the set of path trees obtained by solving the oblivious
flow problem on G with capacity function ¢ contains a tree that defines a bisection
of G which costs logarithmically more than an optimal solution. We call this
bisection a minimum tree bisection. It is obtained by reweighing the edges of the
tree to cost as much as the tree splits introduced by them and then solving the
minimum bisection problem on those trees. This can be solved in polynomial time
with a straightforward dynamic programming approach described in [WS11].

Definition 5 (Minimum Tree Bisection). Given a spanning tree T of G
with an edge ey € Ep. We define a new cost function cp : Ep —]Ra' based on
the tree splits induced by the edges of T'. The cost of a bisection S is the sum of
tree split costs of all tree edges cut by S.

CT(GT) = C’(eT)
cer(6(8) = Y Cler)

er€Er:

GTE(s(S)
The minimum tree bisection X of T is an optimal solution of the minimum
bisection problem with respect to the cost function cr.

Assuming we can find minimum tree bisections in polynomial time, the follow-
ing algorithm describes an O(logn) approximation algorithm for the minimum
bisection problem. While the polynomial running time is clear, it remains to
show that the obtained solution actually satisfies the approximation guarantee.

Algorithm 1. Given graph G = (V, E) and cost function c: E — R .

1. Interpret costs c(e) as capacities

2. Solve oblivious routing on G, obtaining trees T;
3. Find minimum tree bisections X; for all trees T;
4. Choose the X; with lowest ¢(6(X;))

To proof the guarantee we will need two lemmas connecting the cost of a
split in the original graph GG with the costs in a single spanning tree T relative
to its cost function e¢r and a convex combination of trees.

Lemma 3. Let {(T;, \:;)} be an O(logn)-approzimation to the oblivious flow
problem. Then for any cut S C V the convexr combination of tree bisections is
bounded above by the cost of S times a logarithmic factor.

Z Aier, (6(S5)) < O(logn)e(4(5))

Proof. We remember the first constraint of the primal program in Since
we have already proven that o € O(logn) we can replace it by this bound and
sum up the inequalities for all edges in §(S).

ZAi Z Z Ci(er) < O(logn)c(4(S))
i (u,v)€8(S) er€Ty:
(u,’U)EPi(eT)

10

Fig. 6. The cost of S in the original graph is the sum of all red and blue dashed edge
costs. While the red edges are tree edges and thus contained in the tree cost function,
the blue dashed edge connecting v and v is contained in the tree split introduced by
edge e3 on the tree path between u and v.

The right hand side then sums up to the desired term, while we have to rewrite
the left hand side a bit.

cr,(5(8) = Y. Ciler)< > S Ciler)

er€Eq;: (u,0)€8(S) er€Ty:
er€d(9) (u,v)EP;i(er)

While the equality holds by definition, we observe that for every tree edge er
contained in §(5) there must be an edge in P;(er) which crosses the boundary
of S since e starts in S and ends outside of S. Therefore, all summands in the
left side are contained in the right side, the inequality holds. If we apply this for
all T;, we have proven the lemma. a

While we can bound the convex combination of minimum tree bisections
obtained by the oblivious flow approximation by the original cost function, we
can also show that the original cost is always smaller than the cost of the same
set relative to some tree cost function.

Lemma 4. For any spanning tree T and any cut S C V' the cost of the cut is
bounded above by the tree bisection of T'.

c(6(5)) < er(8(5))

Proof. An edge (u,v) is contained in §(S) iff it starts in S and ends outside of
S. Since there is an unique path from u to v in T there must be an edge er on
this path that is also contained in §(S). But then (u,v) must be contained in
the tree split introduced by e and is therefore contained in the right hand side
costs by definition. See for an illustration of this proof. O

These lemmas allow us to quickly prove the approximation guarantee of the
algorithm.

11

Theorem 3. |Algorithm 1] is an O(logn) approximation algorithm for the min-

imum bisection problem.

Proof. Let X* be an optimal minimum bisection of G and {(T}, A\;)} be a set
of trees obtained from the oblivious flow algorithm with minimum tree bisec-
tions X;. We consider the convex combination of the costs of all minimum tree
bisections.

Z Xie(8(X:)) <) Nier, (5(X5))

< O(logn)e(3(X™))

Using we know that every single tree bisection X; can only cost more
relative to its respective cost function cr,. But since the X; are optimal solutions
for the trees T}, the global optimal solution X* cannot be better. We now apply
to show that the original convex combination of bisections is bounded
by our desired bound. Since the combination of nonnegative costs is bounded, so
must be the smallest cost or otherwise the inequality cannot hold. This proofs
the correctness of the algorithm. ad

References

ACF™103. Yossi Azar, Edith Cohen, Amos Fiat, Haim Kaplan, and Harald Récke. Op-
timal oblivious routing in polynomial time. In Proceedings of the thirty-fifth
annual ACM symposium on Theory of computing, pages 383-388. ACM,
2003.

BKRO03. Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Réacke. A practical
algorithm for constructing oblivious routing schemes. In Proceedings of the
fifteenth annual ACM symposium on Parallel algorithms and architectures,
pages 24-33. ACM, 2003.

CLRS01. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2 edition, 2001.

Ré&c08. Harald Réacke. Optimal hierarchical decompositions for congestion minimiza-
tion in networks. In Proceedings of the fortieth annual ACM symposium on
Theory of computing, pages 255-264. ACM, 2008.

WS11. David P Williamson and David B Shmoys. The design of approzimation
algorithms. Cambridge University Press, 2011.

12

	Oblivious Routing and Minimum Bisection

