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Flow Problems

Problem (Single Commodity Flow)

Given

An (un)directed Graph G = (V,E)

A capacity function c : E→ R+

A source s and a target t

Calculate a maximum possible flow f : E→ R+ through G.
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Flow Problems

Problem (Multi Commodity Flow)

Given

An undirected Graph G = (V,E)

A capacity function c : E→ R+

A demand function d : V2 → R+

Calculate a flow f with least congestion ρ = maxe∈E
fe
ce

.
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Oblivious Routing

Problem (Oblivious Routing)

Given

An undirected Graph G = (V,E)

A capacity function c : E→ R+

Calculate a combination of paths for each (u,v) ∈ V2 such that for
any demand function the congestion will be as small as possible.
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Routing with a Spanning Tree

Choose any spanning tree T of G

Routing along its unique paths is a feasible solution
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Tree Splits

Removing one edge eT from a ST creates a node partition S(eT)

Every such partition has a capacity C(eT)

And a demand D(eT)

C(eT) = ∑
u∈S(eT ),
v 6∈S(eT )

cuv D(eT) = ∑
u∈S(eT ),
v 6∈S(eT )

cuv
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Optimal Solution

Lemma
For any tree T and any tree edge eT , we know that for any routing in
G there must be an edge with congestion

ρe ≥
D(eT)

C(eT)

And therefore the optimal solution ρ∗ can be no better.

Suppose we find a tree such that for some α

∀eT ∈ ET . ceT ≥
1
α

C(eT)

Then we have

ρT = max
eT

D(eT)

ceT

≤ α max
eT

D(eT)

C(eT)
≤ αρ∗
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Routing with multiple Spanning Trees

Choose a set of spanning trees {Ti} of G

And a convex combination λ with ∑i λi = 1, λ ≥ 0

Routing is now split according to this combination. For e ∈ E

f (e) = ∑
i:

e∈Ti

λiDi(e)

u

v

8/26



Routing with multiple Spanning Trees

Choose a set of spanning trees {Ti} of G

And a convex combination λ with ∑i λi = 1, λ ≥ 0

Routing is now split according to this combination. For e ∈ E

f (e) = ∑
i:

e∈Ti

λiDi(e)

u

v

λ1 =
1
2

8/26



Routing with multiple Spanning Trees

Choose a set of spanning trees {Ti} of G

And a convex combination λ with ∑i λi = 1, λ ≥ 0

Routing is now split according to this combination. For e ∈ E

f (e) = ∑
i:

e∈Ti

λiDi(e)

u

v

λ1 =
1
2

λ2 =
1
2

8/26



Routing with multiple Spanning Trees

Choose a set of spanning trees {Ti} of G

And a convex combination λ with ∑i λi = 1, λ ≥ 0

Routing is now split according to this combination. For e ∈ E

f (e) = ∑
i:

e∈Ti

λiDi(e)

10u

v

λ1 =
1
2

λ2 =
1
2

8/26



Routing with multiple Spanning Trees

Choose a set of spanning trees {Ti} of G

And a convex combination λ with ∑i λi = 1, λ ≥ 0

Routing is now split according to this combination. For e ∈ E

f (e) = ∑
i:

e∈Ti

λiDi(e)

10u

v

λ1 =
1
2

λ2 =
1
2 2

1034

4

2
4

2
1

2

6

4

3

4

5

4

3
1

4

6

1

2

4

1

5

ρ = max
e∈E

fe
ce

=
5
2

= 2.5

8/26



Routing with multiple Spanning Trees

Suppose we now find a set of trees such that for some α

∀e ∈ E. ce ≥
1
α ∑

i:
e∈Ti

λiCi(e)

Then we have

ρ = max
e

f (e)
ce

= max
e

∑ i:
e∈Ti

λiDi(e)

ce

≤ α max
e

∑ i:
e∈Ti

λiDi(e)

∑ i:
e∈Ti

λiCi(e)

≤ α max
e

max
i

Di(e)
Ci(e)

≤ αρ∗
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Pathtrees

Identify every edge in a tree with a path in G

These paths can overlap

For tree T we get a mapping PT : ET → E+
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Routing with multiple Pathtrees

Choose a set of pathtrees {Ti} of G with combination λ

Now route along the paths identified with edges. For e ∈ E

f (e) = ∑
i

λi ∑
eT∈Ti :

e∈Pi(eT )

Di(eT)

u

v
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Routing with multiple pathtrees

Again suppose we now find a set of trees such that for some α

∀e ∈ E. ce ≥
1
α ∑

i
λi ∑

eT∈Ti :
e∈Pi(eT )

Ci(eT)

Then we have

ρ = max
e

f (e)
ce

≤ α max
e

∑i λi ∑ eT∈Ti :
e∈Pi(eT )

Di(eT)

∑i λi ∑ eT∈Ti :
e∈Pi(eT )

Ci(eT)

≤ α max
e

max
i

Di(e)
Ci(e)

≤ αρ∗

12/26



Routing with multiple pathtrees

Again suppose we now find a set of trees such that for some α

∀e ∈ E. ce ≥
1
α ∑

i
λi ∑

eT∈Ti :
e∈Pi(eT )

Ci(eT)

Then we have

ρ = max
e

f (e)
ce

≤ α max
e

∑i λi ∑ eT∈Ti :
e∈Pi(eT )

Di(eT)

∑i λi ∑ eT∈Ti :
e∈Pi(eT )

Ci(eT)

≤ α max
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max
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Di(e)
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≤ αρ∗

How do we find such a set of trees? How large is α?
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Primal program

Primal Program

Let I be the exponentially large set of all pathtrees.
We want to find the best trees with smallest α.

min
α,λ

α

s. t. ∑
i∈I

λi ∑
eT∈Ti :

(u,v)∈Pi(eT )

Ci(eT) ≤ αcuv ∀u,v ∈ V

∑
i∈I

λi = 1

λ ≥ 0

We want to show that α ∈ O(log n)

13/26



Dual Program

Dual Program

Let I be the exponentially large set of all pathtrees.

max
z,L

z

s. t. ∑
u,v∈V

cuv`uv = 1

z ≤ ∑
eT∈Ti

Ci(eT) ∑
(u,v)∈Pi(eT )

`uv ∀i ∈ I

L ≥ 0

If z ∈ O(log n) then α ∈ O(log n) by strong duality
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Solution of the Dual Program

Dual Program

Let I be the exponentially large set of all pathtrees.

max
z,L

z

s. t. ∑
u,v∈V

cuv`uv = 1

z ≤ ∑
eT∈Ti

Ci(eT) ∑
(u,v)∈Pi(eT )

`uv ∀i ∈ I

L ≥ 0

We interpret the `uv as edge lengths in G

They define a shortest path metric d`(u,v)

For an edge e = (x,y) we write d`(e) := d`(x,y)
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Tree Metric

Theorem (Tree Metric)

For our metric d` there exists a tree metric (V,M) with

d`(u,v) ≤ Muv ∀u,v ∈ V

∑
u,v∈V

cuvMuv ≤ O(log n) ∑
u,v∈V

cuvd`(u,v)

z

y

x

u

v

Muv = Mux +Mxy +Myz +Mzv
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Sum over all capacities

Lemma
Let T be a spanning tree and (V,M) a tree metric of G = (V,E). Then

∑
(x,y)∈ET

C(x,y)Mxy = ∑
(u,v)∈E

cuvMuv

u

a

b c

d
v

cuv
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Value of the Dual Problem

Dual Program

Let I be the exponentially large set of all pathtrees.

max
L

min
i∈I

∑eT∈Ti
Ci(eT)d`(eT)

∑u,v∈V cuv`uv

s. t. L ≥ 0

For any L we know that for the minimizing tree Ti holds

∑
eT∈Ti

Ci(eT)d`(eT) ≤ ∑
eT∈Ti

Ci(eT)MeT

= ∑
u,v∈V

cuvMuv

≤ O(log n) ∑
u,v∈V

cuvd`(u,v)

≤ O(log n) ∑
u,v∈V

cuv`uv

∑eT∈Ti
Ci(eT)d`(eT)

∑u,v∈V cuv`uv
≤ O(log n)
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Value of the Primal Program

Primal Program

Let I be the exponentially large set of all pathtrees.
We want to find the best trees with smallest α.

min
α,λ

α

s. t. ∑
i∈I

λi ∑
eT∈Ti :

(u,v)∈Pi(eT )

Ci(eT) ≤ αcuv ∀u,v ∈ V

∑
i∈I

λi = 1

λ ≥ 0

There is a λ such that α ∈ O(log n)

Solving the LP is an O(log n)-approximation

But why are polynomially many trees enough?

20/26



Minimum Bisection

Problem (Minimum Bisection)

Given

An undirected Graph G = (V,E)

A cost function c : E→ R+

Find a set S ⊂ V containing half the vertices with minimal split cost.
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Approximation Algorithm

Minimum Bisection Approximation

Given graph G = (V,E) and cost function c : E→ R+.

1 Interpret costs c(e) as capacities

2 Solve oblivious routing on G, obtaining trees Ti

3 Find minimum tree bisections Xi for all trees Ti

4 Choose the Xi with lowest c(δ(Xi))

We have to show

What the Xi actually are

An O(log n)-approximation guarantee

That we can find the Xi in polynomial time
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Tree Bisections

Given a spanning tree T of G with an edge eT ∈ ET

Define a new cost function cT using tree splits

cT(eT) = C(eT) cT(δ(S)) = ∑
eT∈ET :
eT∈δ(S)

C(eT)
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Tree Bisections

Given a spanning tree T of G with an edge eT ∈ ET

Define a new cost function cT using tree splits

cT(eT) = C(eT) cT(δ(S)) = ∑
eT∈ET :
eT∈δ(S)

C(eT)

S
e3

e2

e1

cT(δ(S)) =
3

∑
k=1

C(ek)
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Tree Bisections

Lemma
For any spanning tree T and any S ⊆ V we have

c(δ(S)) ≤ cT(δ(S))

S
u

v
e3

e2

e1
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Tree Bisections

Lemma
Let {Ti} be a solution to the oblivious flow problem on G.
Then for any S ⊆ V we have

∑
i

λicTi
(δ(S)) ≤ O(log n)c(δ(S))

Remember from the primal program that for all u,v ∈ V

∑
i

λi ∑
eT∈Ti :

(u,v)∈Pi(eT )

Ci(eT) ≤ O(log n)cuv

We sum up the inequalities for all (u,v) ∈ δ(S)
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Lemma
Let {Ti} be a solution to the oblivious flow problem on G.
Then for any S ⊆ V we have

∑
i

λicTi
(δ(S)) ≤ O(log n)c(δ(S))

We sum up the inequalities for all (u,v) ∈ δ(S)

This gives us

∑
i

λi ∑
(u,v)∈δ(S)

∑
eT∈Ti :

(u,v)∈Pi(eT )

Ci(eT) ≤ O(log n)c(δ(S))

We are done with the observation that

cTi
(δ(S)) = ∑

eT∈ETi
:

eT∈δ(S)

Ci(eT) ≤ ∑
(u,v)∈δ(S)

∑
eT∈Ti :

(u,v)∈Pi(eT )

Ci(eT)
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Approximation Algorithm

Minimum Bisection Approximation

Given graph G = (V,E) and cost function c : E→ R+.

1 Interpret costs c(e) as capacities

2 Solve oblivious routing on G, obtaining trees Ti

3 Find minimum tree bisections Xi for all trees Ti

4 Choose the Xi with lowest c(δ(Xi))

Let now X∗,Xi be the optimal solutions on G and the Ti. Then

∑
i

λic(δ(Xi)) ≤∑
i

λicTi
(δ(Xi))

≤∑
i

λicTi
(δ(X∗))

≤ O(log n)c(δ(X∗))

This also holds for the best Xi

How to find the Xi?
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