Oblivious Routing and Minimum Bisection Seminar: Approximation Algorithms

Markus Kaiser

June 3, 2014

Problem (Single Commodity Flow)

Given
■ An (un)directed Graph $G=(V, E)$

- A source s and a target t

Calculate a maximum possible 1 low $f: E \rightarrow \mathbb{R}+$ through G.

Problem (Single Commodity Flow)

Given

- An (un)directed Graph $G=(V, E)$
- A capacity function c : $E \rightarrow \mathbb{R}^{+}$

Calculate a maximum possible flow $f: E \rightarrow \mathbb{R}^{+}$through G.

Problem (Single Commodity Flow)

Given

- An (un)directed Graph $G=(V, E)$
- A capacity function c: $E \rightarrow \mathbb{R}^{+}$
- A source s and a target t

Problem (Single Commodity Flow)

Given

- An (un)directed Graph $G=(V, E)$
- A capacity function c : $E \rightarrow \mathbb{R}^{+}$
- A source s and a target t

Calculate a maximum possible flow $f: E \rightarrow \mathbb{R}^{+}$through G.

Problem (Multi Commodity Flow)

Given

- An undirected Graph $G=(V, E)$
$■$ A capacity function $c: E \rightarrow \mathbb{R}^{+}$

Calculate a flow f with least congestion $\rho=\max _{e \in E} \frac{f}{c}$

Problem (Multi Commodity Flow)

Given

■ An undirected Graph $G=(V, E)$

- A capacity function c : $E \rightarrow \mathbb{R}^{+}$
- A demand function $d: V^{2} \rightarrow \mathbb{R}^{+}$

Problem (Multi Commodity Flow)

Given

- An undirected Graph $G=(V, E)$
- A capacity function c : $E \rightarrow \mathbb{R}^{+}$
- A demand function $d: V^{2} \rightarrow \mathbb{R}^{+}$

Calculate a flow f with least congestion $\rho=\max _{e \in E} \frac{f_{e}}{C_{e}}$.

Problem (Oblivious Routing)

Given

■ An undirected Graph $G=(V, E)$

- A capacity function $c: E \rightarrow \mathbb{R}^{+}$

Calculate a combination of paths for each $(u, v) \in V^{2}$ such that for any demand function the congestion will be as small as possible.

Problem (Oblivious Routing)

Given

■ An undirected Graph $G=(V, E)$

- A capacity function $c: E \rightarrow \mathbb{R}^{+}$

Calculate a combination of paths for each $(u, v) \in V^{2}$ such that for any demand function the congestion will be as small as possible.

Problem (Oblivious Routing)

Given

■ An undirected Graph $G=(V, E)$

- A capacity function $c: E \rightarrow \mathbb{R}^{+}$

Calculate a combination of paths for each $(u, v) \in V^{2}$ such that for any demand function the congestion will be as small as possible.

■ Choose any spanning tree T of G

- Routing along its unique paths is a feasible solution

■ Choose any spanning tree T of G
■ Routing along its unique paths is a feasible solution

■ Choose any spanning tree T of G
■ Routing along its unique paths is a feasible solution

■ Choose any spanning tree T of G
■ Routing along its unique paths is a feasible solution

■ Removing one edge e_{T} from a ST creates a node partition $S\left(e_{T}\right)$
■ Every such partition has a capacity $C\left(e_{T}\right)$
■ And a demand $D\left(e_{T}\right)$

$$
C\left(e_{T}\right)=\sum_{\substack{u \in S\left(e_{T}\right), v \notin S\left(e_{T}\right)}} c_{u v} \quad D\left(e_{T}\right)=\sum_{\substack{u \in S\left(e_{T}\right), v \notin S\left(e_{T}\right)}} c_{u v}
$$

■ Removing one edge e_{T} from a ST creates a node partition $S\left(e_{T}\right)$
■ Every such partition has a capacity $C\left(e_{T}\right)$
■ And a demand $D\left(e_{T}\right)$

$$
C\left(e_{T}\right)=\sum_{\substack{u \in S\left(e_{T}\right), v \notin S\left(e_{T}\right)}} c_{u v} \quad D\left(e_{T}\right)=\sum_{\substack{u \in S\left(e_{T}\right), v \notin S\left(e_{T}\right)}} c_{u v}
$$

■ Removing one edge e_{T} from a ST creates a node partition $S\left(e_{T}\right)$
■ Every such partition has a capacity $C\left(e_{T}\right)$
■ And a demand $D\left(e_{T}\right)$

■ Removing one edge e_{T} from a ST creates a node partition $S\left(e_{T}\right)$
■ Every such partition has a capacity $C\left(e_{T}\right)$
■ And a demand $D\left(e_{T}\right)$

Optimal Solution

Lemma

For any tree T and any tree edge e_{T}, we know that for any routing in G there must be an edge with congestion

$$
\rho_{e} \geq \frac{D\left(e_{T}\right)}{C\left(e_{T}\right)}
$$

And therefore the optimal solution ρ^{*} can be no better.

- Suppose we find a tree such that for some α

$$
\forall e_{T} \in E_{T}
$$

- Then we have

Optimal Solution

Lemma

For any tree T and any tree edge e_{T}, we know that for any routing in G there must be an edge with congestion

$$
\rho_{e} \geq \frac{D\left(e_{T}\right)}{C\left(e_{T}\right)}
$$

And therefore the optimal solution ρ^{*} can be no better.

■ Suppose we find a tree such that for some α

$$
\forall e_{T} \in E_{T} . \quad c_{e_{T}} \geq \frac{1}{\alpha} C\left(e_{T}\right)
$$

■ Then we have

$$
\rho_{T}=\max _{e_{T}} \frac{D\left(e_{T}\right)}{C_{e_{T}}} \leq \alpha \max _{e_{T}} \frac{D\left(e_{T}\right)}{C\left(e_{T}\right)} \leq \alpha \rho^{*}
$$

■ Choose a set of spanning trees $\left\{T_{i}\right\}$ of G
■ And a convex combination λ with $\sum_{i} \lambda_{i}=1, \lambda \geq 0$
■ Routing is now split according to this combination. For $e \in E$

$$
f(e)=\sum_{\substack{i \\ e \in T_{i}}} \lambda_{i} D_{i}(e)
$$

■ Choose a set of spanning trees $\left\{T_{i}\right\}$ of G

- And a convex combination λ with $\sum_{i} \lambda_{i}=1, \lambda \geq 0$
- Routing is now split according to this combination. For $e \in E$

$$
f(e)=\sum_{\substack{i \\ e \in T_{i}}} \lambda_{i} D_{i}(e)
$$

■ Choose a set of spanning trees $\left\{T_{i}\right\}$ of G

- And a convex combination λ with $\sum_{i} \lambda_{i}=1, \lambda \geq 0$

■ Routing is now split according to this combination. For $e \in E$

$$
f(e)=\sum_{\substack{i \\ e \in T_{i}}} \lambda_{i} D_{i}(e)
$$

■ Choose a set of spanning trees $\left\{T_{i}\right\}$ of G

- And a convex combination λ with $\sum_{i} \lambda_{i}=1, \lambda \geq 0$

■ Routing is now split according to this combination. For $e \in E$

$$
f(e)=\sum_{\substack{i: \\ e \in T_{i}}} \lambda_{i} D_{i}(e)
$$

■ Choose a set of spanning trees $\left\{T_{i}\right\}$ of G

- And a convex combination λ with $\sum_{i} \lambda_{i}=1, \lambda \geq 0$

■ Routing is now split according to this combination. For $e \in E$

$$
f(e)=\sum_{\substack{i \\ e \in T_{i}}} \lambda_{i} D_{i}(e)
$$

■ Suppose we now find a set of trees such that for some α

$$
\forall e \in E . \quad c_{e} \geq \frac{1}{\alpha} \sum_{\substack{i \\ e \in T_{i}}} \lambda_{i} C_{i}(e)
$$

■ Then we have

$$
\begin{aligned}
& \rho=\max _{e} \frac{f(e)}{C_{e}} \\
&=\max _{e} \frac{\sum_{i=1}^{i} \in T_{i}}{} \lambda_{i} D_{i}(e) \\
& C_{e} \\
& \leq \alpha \max _{e} \frac{\sum_{e}^{i} i_{i} T_{i}}{} \lambda_{i} D_{i}(e) \\
& \sum_{e \in T_{i}}^{i_{i}} \lambda_{i} C_{i}(e) \\
& \leq \alpha \max _{e} \max _{i} \frac{D_{i}(e)}{C_{i}(e)} \leq \alpha \rho^{*}
\end{aligned}
$$

■ Identify every edge in a tree with a path in G

- These paths can overlap
$■$ For tree T we get a mapping $P_{T}: E_{T} \rightarrow E^{+}$

■ Identify every edge in a tree with a path in G

- These paths can overlap
$■$ For tree T we get a mapping $P_{T}: E_{T} \rightarrow E^{+}$

■ Choose a set of pathtrees $\left\{T_{i}\right\}$ of G with combination λ
■ Now route along the paths identified with edges. For $e \in E$

$$
f(e)=\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}\left(e_{T}\right)}} D_{i}\left(e_{T}\right)
$$

■ Choose a set of pathtrees $\left\{T_{i}\right\}$ of G with combination λ

- Now route along the paths identified with edges. For $e \in E$

$$
f(e)=\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}\left(e_{T}\right)}} D_{i}\left(e_{T}\right)
$$

■ Choose a set of pathtrees $\left\{T_{i}\right\}$ of G with combination λ
■ Now route along the paths identified with edges. For $e \in E$

$$
f(e)=\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}\left(e_{T}\right)}} D_{i}\left(e_{T}\right)
$$

■ Choose a set of pathtrees $\left\{T_{i}\right\}$ of G with combination λ

- Now route along the paths identified with edges. For $e \in E$

$$
f(e)=\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}\left(e_{T}\right)}} D_{i}\left(e_{T}\right)
$$

■ Choose a set of pathtrees $\left\{T_{i}\right\}$ of G with combination λ
■ Now route along the paths identified with edges. For $e \in E$

$$
f(e)=\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}\left(e_{T}\right)}} D_{i}\left(e_{T}\right)
$$

■ Again suppose we now find a set of trees such that for some α

$$
\forall e \in E . \quad c_{e} \geq \frac{1}{\alpha} \sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e_{\in} \in P_{i}\left(e_{T}\right)}} C_{i}\left(e_{T}\right)
$$

■ Then we have

$$
\begin{aligned}
\rho & =\max _{e} \frac{f(e)}{C_{e}} \\
& \leq \alpha \max _{e} \frac{\sum_{i} \lambda_{i} \sum_{\substack{e_{e} \in T_{i} \\
e \in P_{i} \\
e_{i}}} D_{i}\left(e_{T}\right)}{\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i} \\
e \in P_{i}\left(e_{T}\right)}} C_{i}\left(e_{T}\right)} \\
& \leq \alpha \max _{e} \max _{i} \frac{D_{i}(e)}{C_{i}(e)} \leq \alpha \rho^{*}
\end{aligned}
$$

■ Again suppose we now find a set of trees such that for some α

$$
\forall e \in E . \quad c_{e} \geq \frac{1}{\alpha} \sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e_{\in} \in P_{i}\left(e_{T}\right)}} C_{i}\left(e_{T}\right)
$$

■ Then we have

$$
\begin{aligned}
\rho & =\max _{e} \frac{f(e)}{C_{e}} \\
& \leq \alpha \max _{e} \frac{\sum_{i} \lambda_{i} \sum_{\substack{e_{\in} \in T_{i} \\
e \in P_{i}\left(e_{T}\right)}}^{\sum_{i}\left(e_{T}\right)}}{\sum_{i} \lambda_{i} \sum_{\substack{e_{i} \in T_{i} \\
e \in P_{i}\left(e_{T}\right)}} C_{i}\left(e_{T}\right)} \\
& \leq \alpha \max _{e} \max _{i} \frac{D_{i}(e)}{C_{i}(e)} \leq \alpha \rho^{*}
\end{aligned}
$$

How do we find such a set of trees? How large is α ?

Primal Program

Let \mathcal{I} be the exponentially large set of all pathtrees. We want to find the best trees with smallest α.

$$
\begin{array}{rlr}
\min _{\alpha, \lambda} & \alpha \\
\text { s.t. } & \sum_{i \in \mathcal{I}} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\
(u, v) \in P_{i}\left(e_{T}\right)}} C_{i}\left(e_{T}\right) & \leq \alpha C_{u v} \quad \forall u, v \in V \\
\sum_{i \in \mathcal{I}} \lambda_{i} & =1 \\
& & \lambda \geq 0
\end{array}
$$

We want to show that $\alpha \in \mathcal{O}(\log n)$

Dual Program

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$
\begin{aligned}
& \max _{z, \mathcal{L}} \quad z \\
& \text { s.t. } \sum_{u, v \in V} c_{u v} \ell_{u v}
\end{aligned}=1 \quad \begin{aligned}
z & \leq \sum_{e_{T} \in T_{i}} C_{i}\left(e_{T}\right) \sum_{(u, v) \in P_{i}\left(e_{T}\right)} \ell_{u v} \quad \forall i \in \mathcal{I} \\
\mathcal{L} & \geq 0
\end{aligned}
$$

If $z \in \mathcal{O}(\log n)$ then $\alpha \in \mathcal{O}(\log n)$ by strong duality

Dual Program

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$
\begin{aligned}
& \max _{z, \mathcal{L}} \quad z \\
& \text { s.t. } \sum_{u, v \in V} c_{u v} \ell_{u v}
\end{aligned}=1 \quad \begin{aligned}
z & \leq \sum_{e_{T} \in T_{i}} C_{i}\left(e_{T}\right) \sum_{(u, v) \in P_{i}\left(e_{T}\right)} \ell_{u v} \quad \forall i \in \mathcal{I} \\
\mathcal{L} & \geq 0
\end{aligned}
$$

■ We interpret the $\ell_{u v}$ as edge lengths in G
\square They define a shortest path metric $d_{\ell}(u, v)$
■ For an edge $e=(x, y)$ we write $d_{\ell}(e):=d_{\ell}(x, y)$

Dual Program

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$
\begin{array}{rl}
\max _{z, \mathcal{L}} & z \\
\text { s.t. } & \sum_{u, v \in V} c_{u v} \ell_{u v}
\end{array}=1
$$

- We interpret the $\ell_{u v}$ as edge lengths in G
- They define a shortest path metric $d_{\ell}(u, v)$

■ For an edge $e=(x, y)$ we write $d_{\ell}(e):=d_{\ell}(x, y)$

Dual Program

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$
\begin{array}{rl}
\max _{z, \mathcal{L}} & z \\
\text { s.t. } \sum_{u, v \in V} c_{u v} \ell_{u v} & =1 \\
z & \leq \sum_{e_{T} \in T_{i}} c_{i}\left(e_{T}\right) d_{\ell}\left(e_{T}\right) \quad \forall i \in \mathcal{I} \\
\mathcal{L} & \geq 0
\end{array}
$$

■ We interpret the $\ell_{u v}$ as edge lengths in G
■ They define a shortest path metric $d_{\ell}(u, v)$
■ For an edge $e=(x, y)$ we write $d_{\ell}(e):=d_{\ell}(x, y)$

Dual Program

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$
\begin{aligned}
& \max _{z, \mathcal{L}} \quad z \\
& \text { s.t. } \sum_{u, v \in V} c_{u v} \ell_{u v}=1 \\
& z \leq \sum_{e_{T} \in T_{i}} C_{i}\left(e_{T}\right) d_{\ell}\left(e_{T}\right) \quad \forall i \in \mathcal{I} \\
& \mathcal{L} \geq 0
\end{aligned}
$$

■ We interpret the $\ell_{u v}$ as edge lengths in G
■ They define a shortest path metric $d_{\ell}(u, v)$
■ For an edge $e=(x, y)$ we write $d_{\ell}(e):=d_{\ell}(x, y)$

Dual Program

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$
\begin{aligned}
& \max _{z, \mathcal{L}} \quad z \\
& \text { s.t. } \sum_{u, v \in V} c_{u v} \ell_{u v}
\end{aligned}=1
$$

■ We interpret the $\ell_{u v}$ as edge lengths in G
■ They define a shortest path metric $d_{\ell}(u, v)$
■ For an edge $e=(x, y)$ we write $d_{\ell}(e):=d_{\ell}(x, y)$

Dual Program

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$
\begin{aligned}
\max _{\mathcal{L}} & \min _{i \in \mathcal{I}} \sum_{e_{T} \in T_{i}} C_{i}\left(e_{T}\right) d_{\ell}\left(e_{T}\right) \\
\text { s.t. } & \sum_{u, v \in V} c_{u v} \ell_{u v}=1 \\
& \mathcal{L} \geq 0
\end{aligned}
$$

- Now suppose

- If we scale every length by $\frac{1}{\beta}$ our solution will change by $\frac{1}{\beta}$

Dual Program

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$
\begin{aligned}
& \max _{\mathcal{L}} \min _{i \in \mathcal{I}} \sum_{e_{T} \in T_{i}} C_{i}\left(e_{T}\right) d_{\ell}\left(e_{T}\right) \\
& \text { s.t. } \sum_{u, v \in V} c_{u v} \ell_{u v}=1 \\
& \mathcal{L} \geq 0
\end{aligned}
$$

■ Now suppose

$$
\sum_{u, v \in V} c_{u v} \ell_{u v}=\beta>0
$$

- If we scale every length by $\frac{1}{\beta}$ our solution will change by $\frac{1}{\beta}$

Dual Program

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$
\begin{array}{cl}
\max _{\mathcal{L}} & \min _{i \in \mathcal{I}} \frac{\sum_{e_{T} \in T_{i}} C_{i}\left(e_{T}\right) d_{\ell}\left(e_{T}\right)}{\sum_{u, v \in V} C_{u v} \ell_{u v}} \\
\text { s.t. } & \mathcal{L} \geq 0
\end{array}
$$

■ Now suppose

$$
\sum_{u, v \in V} c_{u v} \ell_{u v}=\beta>0
$$

- If we scale every length by $\frac{1}{\beta}$ our solution will change by $\frac{1}{\beta}$

Theorem (Tree Metric)

For our metric d_{ℓ} there exists a tree metric (V, M) with

$$
\begin{aligned}
d_{\ell}(u, v) & \leq M_{u v} \quad \forall u, v \in V \\
\sum_{u, v \in V} c_{u v} M_{u v} & \leq \mathcal{O}(\log n) \sum_{u, v \in V} c_{u v} d_{\ell}(u, v)
\end{aligned}
$$

Sum over all capacities

Lemma

Let T be a spanning tree and (V, M) a tree metric of $G=(V, E)$. Then

$$
\sum_{(x, y) \in E_{T}} C(x, y) M_{x y}=\sum_{(u, v) \in E} c_{u v} M_{u v}
$$

Lemma

Let T be a spanning tree and (V, M) a tree metric of $G=(V, E)$. Then

$$
\sum_{(x, y) \in E_{T}} C(x, y) M_{x y}=\sum_{(u, v) \in E} c_{u v} M_{u v}
$$

Sum over all capacities

Lemma

Let T be a spanning tree and (V, M) a tree metric of $G=(V, E)$. Then

$$
\sum_{(x, y) \in E_{T}} C(x, y) M_{x y}=\sum_{(u, v) \in E} C_{u v} M_{u v}
$$

Sum over all capacities

Lemma

Let T be a spanning tree and (V, M) a tree metric of $G=(V, E)$. Then

$$
\sum_{(x, y) \in E_{T}} C(x, y) M_{x y}=\sum_{(u, v) \in E} c_{u v} M_{u v}
$$

Sum over all capacities

Lemma

Let T be a spanning tree and (V, M) a tree metric of $G=(V, E)$. Then

$$
\sum_{(x, y) \in E_{T}} C(x, y) M_{x y}=\sum_{(u, v) \in E} c_{u v} M_{u v}
$$

Sum over all capacities

Lemma

Let T be a spanning tree and (V, M) a tree metric of $G=(V, E)$. Then

$$
\sum_{(x, y) \in E_{T}} C(x, y) M_{x y}=\sum_{(u, v) \in E} c_{u v} M_{u v}
$$

Dual Program

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$
\begin{aligned}
\max _{\mathcal{L}} & \min _{i \in \mathcal{I}} \frac{\sum_{e_{T} \in T_{i}} C_{i}\left(e_{T}\right) d_{\ell}\left(e_{T}\right)}{\sum_{u, v \in V} C_{u v} \ell u v} \\
\text { s.t. } & \mathcal{L} \geq 0
\end{aligned}
$$

For any \mathcal{L} we know that for the minimizing tree T_{i} holds

$$
\begin{aligned}
\sum_{e_{T} \in T_{i}} C_{i}\left(e_{T}\right) d_{\ell}\left(e_{T}\right) & \leq \sum_{e_{T} \in T_{i}} C_{i}\left(e_{T}\right) M_{e_{T}} \\
& =\sum_{u, v \in V} c_{u v} M_{u v} \\
& \leq \mathcal{O}(\log n) \sum_{u, v \in V} c_{u v} d_{\ell}(u, v) \\
& \leq \mathcal{O}(\log n) \sum_{u, v \in V} c_{u v} \ell_{u v} \\
\frac{\sum_{e_{T} \in T_{i}} C_{i}\left(e_{T}\right) d_{\ell}\left(e_{T}\right)}{\sum_{u, v \in V} c_{u v} \ell_{u v}} & \leq \mathcal{O}(\log n)
\end{aligned}
$$

Primal Program

Let \mathcal{I} be the exponentially large set of all pathtrees. We want to find the best trees with smallest α.

$$
\begin{array}{rlr}
\min _{\alpha, \lambda} & \alpha \\
\text { s.t. } & \sum_{i \in \mathcal{I}} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\
(u, v) \in P_{i}\left(e_{T}\right)}} C_{i}\left(e_{T}\right) \leq \alpha C_{u v} \quad \forall u, v \in V \\
\sum_{i \in \mathcal{I}} \lambda_{i} & =1 \\
& & \lambda \geq 0
\end{array}
$$

■ There is a λ such that $\alpha \in \mathcal{O}(\log n)$
■ Solving the LP is an $\mathcal{O}(\log n)$-approximation
■ But why are polynomially many trees enough?

Minimum Bisection

Problem (Minimum Bisection)

Given

■ An undirected Graph $G=(V, E)$

- A cost function c: $E \rightarrow \mathbb{R}^{+}$

Find a set $S \subset V$ containing half the vertices with minimal split cost.

Minimum Bisection

Problem (Minimum Bisection)

Given

■ An undirected Graph $G=(V, E)$

- A cost function $c: E \rightarrow \mathbb{R}^{+}$

Find a set $S \subset V$ containing half the vertices with minimal split cost.

Minimum Bisection

Problem (Minimum Bisection)

Given

■ An undirected Graph $G=(V, E)$
■ A cost function $c: E \rightarrow \mathbb{R}^{+}$
Find a set $S \subset V$ containing half the vertices with minimal split cost.

Minimum Bisection

Problem (Minimum Bisection)

Given

■ An undirected Graph $G=(V, E)$

- A cost function $c: E \rightarrow \mathbb{R}^{+}$

Find a set $S \subset V$ containing half the vertices with minimal split cost.

Approximation Algorithm

Minimum Bisection Approximation

Given graph $G=(V, E)$ and cost function $c: E \rightarrow \mathbb{R}^{+}$.
1 Interpret costs $c(e)$ as capacities
2 Solve oblivious routing on G, obtaining trees T_{i}
3 Find minimum tree bisections X_{i} for all trees T_{i}
4 Choose the X_{i} with lowest $c\left(\delta\left(X_{i}\right)\right)$

We have to show

- What the X : actually are
- An $\mathcal{O}(\log n)$-approximation guarantee
- That we can find the X_{i} in polynomial time

Approximation Algorithm

Minimum Bisection Approximation

Given graph $G=(V, E)$ and cost function $c: E \rightarrow \mathbb{R}^{+}$.
1 Interpret costs $c(e)$ as capacities
2 Solve oblivious routing on G, obtaining trees T_{i}
3 Find minimum tree bisections X_{i} for all trees T_{i}
4 Choose the X_{i} with lowest $c\left(\delta\left(X_{i}\right)\right)$

We have to show
■ What the X_{i} actually are
■ An $\mathcal{O}(\log n)$-approximation guarantee

- That we can find the X_{i} in polynomial time

■ Given a spanning tree T of G with an edge $e_{T} \in E_{T}$
■ Define a new cost function c_{T} using tree splits

$$
c_{T}\left(e_{T}\right)=C\left(e_{T}\right) \quad c_{T}(\delta(S))=\sum_{\substack{e_{T} \in E_{T}: \\ e_{T} \in \delta(S)}} C\left(e_{T}\right)
$$

■ Given a spanning tree T of G with an edge $e_{T} \in E_{T}$
■ Define a new cost function c_{T} using tree splits

$$
c_{T}\left(e_{T}\right)=C\left(e_{T}\right) \quad c_{T}(\delta(S))=\sum_{\substack{e_{T} \in E_{T}: \\ e_{T} \in \delta(S)}} C\left(e_{T}\right)
$$

■ Given a spanning tree T of G with an edge $e_{T} \in E_{T}$
■ Define a new cost function c_{T} using tree splits

$$
c_{T}\left(e_{T}\right)=C\left(e_{T}\right) \quad c_{T}(\delta(S))=\sum_{\substack{e_{T} \in E_{T}: \\ e_{T} \in \delta(S)}} C\left(e_{T}\right)
$$

Lemma

For any spanning tree T and any $S \subseteq V$ we have

$$
c(\delta(S)) \leq c_{T}(\delta(S))
$$

Lemma

Let $\left\{T_{i}\right\}$ be a solution to the oblivious flow problem on G. Then for any $S \subseteq V$ we have

$$
\sum_{i} \lambda_{i} c_{T_{i}}(\delta(S)) \leq \mathcal{O}(\log n) c(\delta(S))
$$

- Remember from the primal program that for all $u, v \in V$

$$
\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i} ; \\(u, v) \in P_{i}\left(e_{T}\right)}} C_{i}\left(e_{T}\right) \leq \mathcal{O}(\log n) c_{u v}
$$

■ We sum up the inequalities for all $(u, v) \in \delta(S)$

Lemma

Let $\left\{T_{i}\right\}$ be a solution to the oblivious flow problem on G. Then for any $S \subseteq V$ we have

$$
\sum_{i} \lambda_{i} c_{T_{i}}(\delta(S)) \leq \mathcal{O}(\log n) c(\delta(S))
$$

■ We sum up the inequalities for all $(u, v) \in \delta(S)$

- This gives us

$$
\sum_{i} \lambda_{i} \sum_{(u, v) \in \delta(S)} \sum_{\substack{e_{T} \in T_{i} \\(u, v) \in P_{i}\left(e_{T}\right)}} C_{i}\left(e_{T}\right) \leq \mathcal{O}(\log n) c(\delta(S))
$$

■ We are done with the observation that

$$
C_{T_{i}}(\delta(S))=\sum_{\substack{e_{T} \in E_{T_{i}}: \\ e_{T} \in \delta(S)}} C_{i}\left(e_{T}\right) \leq \sum_{(u, v) \in \delta(S)} \sum_{\substack{e_{T} \in T_{i}: \\(u, v) \in P_{i}\left(e_{T}\right)}} C_{i}\left(e_{T}\right)
$$

Minimum Bisection Approximation

Given graph $G=(V, E)$ and cost function $c: E \rightarrow \mathbb{R}^{+}$.
1 Interpret costs $C(e)$ as capacities
2 Solve oblivious routing on G, obtaining trees T_{i}
3 Find minimum tree bisections X_{i} for all trees T_{i}
4 Choose the X_{i} with lowest $c\left(\delta\left(X_{i}\right)\right)$
\square Let now X^{*}, X_{i} be the optimal solutions on G and the T_{i}. Then

$$
\begin{aligned}
\sum_{i} \lambda_{i} c\left(\delta\left(X_{i}\right)\right) & \leq \sum_{i} \lambda_{i} c_{T_{i}}\left(\delta\left(X_{i}\right)\right) \\
& \leq \sum_{i} \lambda_{i} c_{T_{i}}\left(\delta\left(X^{*}\right)\right) \\
& \leq \mathcal{O}(\log n) c\left(\delta\left(X^{*}\right)\right)
\end{aligned}
$$

- This also holds for the best X_{i}
- How to find the X_{i} ?

