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Flow Problems TI_ITI

Problem (Single Commodity Flow)

Given
®m An (un)directed Graph G = (V,E)
m A capacity function c: E — R™
m A source s and a target t
Calculate a maximum possible flow f : E — R* through G.
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Flow Problems

Problem (Multi Commodity Flow)

Given
®m An undirected Graph G = (V,E)
m A capacity function c : E —+ R™
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Flow Problems T|_IT|

Problem (Multi Commodity Flow)
Given
®m An undirected Graph G = (V,E)
m A capacity function c : E —+ R™
m A demand function d : V2 —» R*
Calculate a flow f with least congestion p = maxecr L.




Oblivious Routing TI_ITI

Problem (Oblivious Routing)

Given
®m An undirected Graph G = (V,E)
m A capacity function c : E —+ R™

Calculate a combination of paths for each (u,v) € V2 such that for
any demand function the congestion will be as small as possible.
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Oblivious Routing TUT

Problem (Oblivious Routing)
Given
m An undirected Graph G = (V,E)
m A capacity function c : E —+ R™

Calculate a combination of paths for each (u,v) € V2 such that for
any demand function the congestion will be as small as possible.
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Routing with a Spanning Tree

m Choose any spanning tree T of G
m Routing along its unique paths is a feasible solution
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Routing with a Spanning Tree T|_|T|

m Choose any spanning tree T of G
m Routing along its unique paths is a feasible solution
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Tree Splits TI_ITI

® Removing one edge ey from a ST creates a node partition S(er)
m Every such partition has a capacity C(er)
m And a demand D(er)

Cler)= ) cw Dler)= ) cuw

uesS(er), ueS(er),
v#S(er) vgS(er)
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Optimal Solution TI_ITI

Lemma
For any tree T and any tree edge ey, we know that for any routing in
G there must be an edge with congestion

Der)
P> Cler)

And therefore the optimal solution p* can be no better.



Optimal Solution TI_ITI

Lemma

For any tree T and any tree edge er, we know that for any routing in
G there must be an edge with congestion

D(er)

C(er)

Pe >

And therefore the optimal solution p* can be no better.

m Suppose we find a tree such that for some «
1
Ver c Er. Ce; > ;C(eT)

m Then we have
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Routing with multiple Spanning Trees T|_|T|

m Choose a set of spanning trees {T;} of G
® And a convex combination A with };4; =1, A >0
m Routing is now split according to this combination. Fore € E

fle)= ) ADi(e)

i:
ecT;
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m Choose a set of spanning trees {T;} of G
B And a convex combination A with y;A; =1, A >0
m Routing is now split according to this combination. Fore € E

f(e) = ) AiDi(e)

i
ecT;
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Routing with multiple Spanning Trees T|_|T|

m Suppose we now find a set of trees such that for some «

1
Vee€E. cCe> . E AiCi(e)

i:
ecT;

® Then we have

Y i AiDi(e)

ecT;
X i AiCi(e)
ecT;
Dj(e) .
< wo”
Cie) =

< amax
e

<uw max max
1
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Pathtrees TI.ITl

m ldentify every edge in a tree with a path in G
m These paths can overlap
m For tree T we get a mapping Py : Er — ET
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Routing with multiple Pathtrees T|_|T|

m Choose a set of pathtrees {T;} of G with combination A
m Now route along the paths identified with edges. Fore € E
fle)=3A ). Diler)

i ereT;:
ecPj(er)
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Routing with multiple pathtrees T|_|T|

m Again suppose we now find a set of trees such that for some «

Ve cE. ce> %ZA, Y. Ci(er)

i eTET,'Z
eePj(er)
® Then we have
0= max f(e)
e Ce
LiAiX erer: Dier)
ecPi(er)
< o max
T e LAY eer: Ciler)
ecPi(er)
Di(e) < *

< ¢ Max max o
=TT Cie) =
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Routing with multiple pathtrees T|_|T|

m Again suppose we now find a set of trees such that for some «

Ve € E. CEZ%Z)\,’ Y. Ci(er)

i GTET,'Z
eePj(er)
® Then we have
o= max f(e)
e Ce
LiAiX erer: Dier)
ecP;(er)
< amax
T e LAY eer: Ciler)
ecPi(er)
Dij(e)
< ] < *
< wmax m’ax Cile) = ap

How do we find such a set of trees? How large is a?
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Primal program

Primal Program

Let Z be the exponentially large set of all pathtrees.
We want to find the best trees with smallest «.

min «
Dé,/\

s.t. YA ) Cer)<acww VuveV
i€eT ereT;:
(LI,V)EP,'(ET)

Y Aai=1
i€Z
A>0

We want to show that « € O(logn)
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Dual Program

Dual Program

Let Z be the exponentially large set of all pathtrees.

max 2z

z,L

S.t. Z CUVEUV = 1
uveVv

ereT; (u,v)ePj(er)
L>0

If z € O(logn) then « € O(log n) by strong duality
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Solution of the Dual Program

Dual Program

Let Z be the exponentially large set of all pathtrees.

max ~Zz
z,L

S.t. Z CUVEUV = 1

u,veVv
z< 2 Ci(er) Z Luy

ereT; (u,v)ePj(er)
L>0

m We interpret the /,, as edge lengths in G
B They define a shortest path metric d,(u, v)
m For an edge e = (x,y) we write d,(e) :=d,(x,y)
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Solution of the Dual Program

Dual Program

Let Z be the exponentially large set of all pathtrees.
max min Ci(er)d,(e
ax  mir eTZE:T,- i(er)d.(er)
St Z Cuvfuv = 1

uveV

L>0
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Solution of the Dual Program TI_ITI

Dual Program

Let Z be the exponentially large set of all pathtrees.

max min Ci(et)d,(e
ax  mir eTZE:T,- i(er)di(er)

uyveVv

L>0

m Now suppose

Z CUVZUV :ﬁ > 0

u,veVv

m If we scale every length by % our solution will change by %
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Solution of the Dual Program TI_ITI

Dual Program
Let Z be the exponentially large set of all pathtrees.
max  min Yerer, Ciler)di(er)
L i€T Yuvev Cuvluy
s.t. £>0

m Now suppose

Z CUVEUV :‘B > 0

uveV

m If we scale every length by % our solution will change by %
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Tree Metric

Theorem (Tree Metric)
For our metric d, there exists a tree metric (V, M) with

de(u,v) < Myy Yu,veV
Y. cuwMuy < O(logn) Y cuvdy(u,v)
uvev u,vev
z
y %
X

Myy = Mux +Mxy + My + Mz,
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Sum over all capacities T|_|T|

Lemma
Let T be a spanning tree and (V,M) a tree metric of G = (V,E). Then

Z C(x,y)Mxy = Z CuvMuyy
(x.y)€Er (u,v)eE
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Value of the Dual Problem

Dual Program
Let Z be the exponentially large set of all pathtrees.
max  mip Zer<T Ci(er)d,(eT)

L i€T Zu,vev Cuvluy
s.t.t. £L>0

For any £ we know that for the minimizing tree T; holds

Y. Ci(er)di(er) < Y. Ci(er)Me,

ereT; ereT;

Z CuvMuy

u,veV
< O(logn) Y cudi(u,v)

u,veVv

< O(logn) Y culuy

u,veVv
Yerer, Ciler)di(er) _
Yuvev Cuvluv -

O(logn)
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Value of the Primal Program

Primal Program

Let Z be the exponentially large set of all pathtrees.
We want to find the best trees with smallest «.

min «
Dé,/\

s.t. YA ) Cer)<acww VuveV
i€eT ereT;:
(U,V)EP,'(ET)

Y Aai=1
i€Z
A>0

m There is a A such that « € O(logn)
m Solving the LP is an O(logn)-approximation
m But why are polynomially many trees enough?
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Minimum Bisection TI_ITI

Problem (Minimum Bisection)
Given
m An undirected Graph G = (V,E)
m A cost function ¢ : E — R*
Find a set S C V containing half the vertices with minimal split cost.
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Minimum Bisection TI_ITI

Problem (Minimum Bisection)
Given
m An undirected Graph G = (V,E)
m A cost function ¢ : E — R*
Find a set S C V containing half the vertices with minimal split cost.




Approximation Algorithm

Minimum Bisection Approximation

Given graph G = (V,E) and cost function c: E — R™.
Interpret costs c(e) as capacities
Solve oblivious routing on G, obtaining trees T;
Find minimum tree bisections X; for all trees T;
Choose the X; with lowest c(6(X;))
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Approximation Algorithm

Minimum Bisection Approximation

Given graph G = (V,E) and cost function c: E — R™.
Interpret costs c(e) as capacities
Solve oblivious routing on G, obtaining trees T;
Find minimum tree bisections X; for all trees T;
Choose the X; with lowest c(4(X;))

We have to show
m What the X; actually are
® An O(logn)-approximation guarantee
m That we can find the X; in polynomial time
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Tree Bisections

m Given a spanning tree T of G with an edge er € Et
m Define a new cost function ¢y using tree splits

cr(er) =C(er) cr(é6(8))= ), Cler)
bt
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Tree Bisections T|_|T|

Lemma
For any spanning tree T and any S C V we have

c(5(5)) < cr(4(5))
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Tree Bisections

Lemma

Let {T;} be a solution to the oblivious flow problem on G.
Then for any S C V we have

Y_Aicr;(3(5)) < O(logn)c(s(S))

m Remember from the primal program that for all u,v e V

YA Y, Ciler) <O(logn)cuy
i eTET,‘I
(uv)ePi(er)

m We sum up the inequalities for all (u,v) € 4(S)
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Tree Bisections

Lemma

Let {T;} be a solution to the oblivious flow problem on G.
Then for any S C V we have

Y_Aicr;(3(5)) < O(logn)c(s(S))

m We sum up the inequalities for all (u,v) € 4(S)
m This gives us

LAY Y., Ci(er) <O(logn)c(s(S))
i (uv)es(S) ereT;:
(u,v)eP;(er)

m We are done with the observation that

cr,(6(8))= ), Ciler) < ), Y, Cier)
erekr;: (uv)es(S) ereT;:
ered(S) (u,v)ePi(er)
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Approximation Algorithm TI_ITI

Minimum Bisection Approximation

Given graph G = (V,E) and cost function c: E — R™.
Interpret costs c(e) as capacities
Solve oblivious routing on G, obtaining trees T;
Find minimum tree bisections X; for all trees T;
Choose the X; with lowest c(4(X;))

m Let now X*, X; be the optimal solutions on G and the T;. Then
Y Aic(3(X;)) < Y Aier (6(X)))
i i
< ) AT, (6(X))
i

< O(log n)c(6(X*))

m This also holds for the best X;
m How to find the X;?
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