Oblivious Routing and Minimum Bisection Seminar: Approximation Algorithms

Markus Kaiser

June 3, 2014

Given

- An (un)directed Graph G = (V, E)
- A capacity function $c : E \to \mathbb{R}^+$
- A source s and a target t

Calculate a maximum possible flow $\mathsf{f}:\mathsf{E} o\mathbb{R}^+$ through $\mathsf{G}.$

Given

- An (un)directed Graph G = (V, E)
- A capacity function $c : E \to \mathbb{R}^+$
- A source s and a target t

Calculate a maximum possible flow $f: E \to \mathbb{R}^+$ through G.

Given

- \blacksquare An (un)directed Graph G = (V, E)
- A capacity function $c : E \to \mathbb{R}^+$
- A source s and a target t

Calculate a maximum possible flow $\mathsf{f}:\mathsf{E} o\mathbb{R}^+$ through $\mathsf{G}.$

Given

- \blacksquare An (un)directed Graph G = (V, E)
- A capacity function $c : E \to \mathbb{R}^+$
- A source s and a target t

Calculate a maximum possible flow $f: E \to \mathbb{R}^+$ through G.

Problem (Multi Commodity Flow)

Given

- \blacksquare An undirected Graph G = (V, E)
- lacksquare A capacity function $c: E
 ightarrow \mathbb{R}^+$
- A demand function $d: V^2 \to \mathbb{R}^+$

Calculate a flow f with least congestion $ho = \max_{\mathbf{e} \in E} rac{f_{\mathbf{e}}}{C_{\mathbf{e}}}$.

Problem (Multi Commodity Flow)

Given

- \blacksquare An undirected Graph G = (V, E)
- lacksquare A capacity function $c: E
 ightarrow \mathbb{R}^+$
- lacksquare A demand function $d: V^2 \to \mathbb{R}^+$

Calculate a flow f with least congestion $\rho = \max_{e \in E} \frac{f_e}{C_o}$.

Problem (Multi Commodity Flow)

Given

- \blacksquare An undirected Graph G = (V, E)
- lacksquare A capacity function $c: E
 ightarrow \mathbb{R}^+$
- lacksquare A demand function $d: V^2 \to \mathbb{R}^+$

Calculate a flow f with least congestion $\rho = \max_{e \in E} \frac{f_e}{c_e}$.

Problem (Oblivious Routing)

Given

- \blacksquare An undirected Graph G = (V, E)
- lacksquare A capacity function $c: E
 ightarrow \mathbb{R}^+$

Calculate a combination of paths for each $(u,v) \in V^2$ such that for any demand function the congestion will be as small as possible.

Problem (Oblivious Routing)

Given

- \blacksquare An undirected Graph G = (V, E)
- lacksquare A capacity function $c: E
 ightarrow \mathbb{R}^+$

Calculate a combination of paths for each $(u,v) \in V^2$ such that for any demand function the congestion will be as small as possible.

Problem (Oblivious Routing)

Given

- \blacksquare An undirected Graph G = (V, E)
- lacksquare A capacity function $c: E
 ightarrow \mathbb{R}^+$

Calculate a combination of paths for each $(u,v) \in V^2$ such that for any demand function the congestion will be as small as possible.

- Choose any spanning tree *T* of *G*
- Routing along its unique paths is a feasible solution

- Choose any spanning tree *T* of *G*
- Routing along its unique paths is a feasible solution

- Choose any spanning tree *T* of *G*
- Routing along its unique paths is a feasible solution

- Choose any spanning tree *T* of *G*
- Routing along its unique paths is a feasible solution

- Removing one edge e_T from a ST creates a node partition $S(e_T)$
- Every such partition has a capacity $C(e_T)$
- \blacksquare And a demand $D(e_T)$

$$C(e_T) = \sum_{\substack{u \in S(e_T), \\ v \notin S(e_T)}} c_{uv} \qquad \qquad D(e_T) = \sum_{\substack{u \in S(e_T), \\ v \notin S(e_T)}} c_{uv}$$

- Removing one edge e_T from a ST creates a node partition $S(e_T)$
- Every such partition has a capacity $C(e_T)$
- \blacksquare And a demand $D(e_T)$

- Removing one edge e_T from a ST creates a node partition $S(e_T)$
- lacktriangle Every such partition has a capacity $C(e_T)$
- \blacksquare And a demand $D(e_T)$

- Removing one edge e_T from a ST creates a node partition $S(e_T)$
- Every such partition has a capacity $C(e_T)$
- \blacksquare And a demand $D(e_T)$

Lemma

For any tree T and any tree edge e_T , we know that for any routing in G there must be an edge with congestion

$$\rho_{\mathsf{e}} \geq \frac{D(\mathsf{e}_{\mathsf{T}})}{C(\mathsf{e}_{\mathsf{T}})}$$

And therefore the optimal solution ρ^* can be no better.

lacksquare Suppose we find a tree such that for some lpha

$$\forall e_T \in E_T. \quad c_{e_T} \geq \frac{1}{\alpha}C(e_T)$$

■ Then we have

$$\rho_T = \max_{e_T} \frac{D(e_T)}{c_{e_T}} \le \alpha \max_{e_T} \frac{D(e_T)}{C(e_T)} \le \alpha \rho$$

Lemma

For any tree T and any tree edge e_T , we know that for any routing in G there must be an edge with congestion

$$\rho_{\mathsf{e}} \geq \frac{D(\mathsf{e}_{\mathsf{T}})}{C(\mathsf{e}_{\mathsf{T}})}$$

And therefore the optimal solution ρ^* can be no better.

■ Suppose we find a tree such that for some α

$$\forall e_T \in E_T. \quad c_{e_T} \ge \frac{1}{\alpha} C(e_T)$$

Then we have

$$\rho_T = \max_{e_T} \frac{D(e_T)}{C_{e_T}} \le \alpha \max_{e_T} \frac{D(e_T)}{C(e_T)} \le \alpha \rho^*$$

- Choose a set of spanning trees $\{T_i\}$ of G
- And a convex combination λ with $\sum_i \lambda_i = 1$, $\lambda \ge 0$
- lacksquare Routing is now split according to this combination. For $e \in E$

$$f(e) = \sum_{\substack{i:\\e \in T_i}} \lambda_i D_i(e)$$

- Choose a set of spanning trees $\{T_i\}$ of G
- And a convex combination λ with $\sum_i \lambda_i = 1$, $\lambda \ge 0$
- lacksquare Routing is now split according to this combination. For $e \in E$

$$f(e) = \sum_{\substack{i:\\e \in T_i}} \lambda_i D_i(e)$$

- Choose a set of spanning trees $\{T_i\}$ of G
- And a convex combination λ with $\sum_i \lambda_i = 1$, $\lambda \geq 0$
- lacksquare Routing is now split according to this combination. For $e \in E$

$$f(e) = \sum_{\substack{i:\\e \in T_i}} \lambda_i D_i(e)$$

- Choose a set of spanning trees $\{T_i\}$ of G
- And a convex combination λ with $\sum_i \lambda_i = 1$, $\lambda \geq 0$
- lacksquare Routing is now split according to this combination. For $e \in E$

$$f(e) = \sum_{\substack{i:\\e \in T_i}} \lambda_i D_i(e)$$

- Choose a set of spanning trees $\{T_i\}$ of G
- And a convex combination λ with $\sum_i \lambda_i = 1$, $\lambda \geq 0$
- lacksquare Routing is now split according to this combination. For $e \in E$

$$f(e) = \sum_{\substack{i:\\e \in T_i}} \lambda_i D_i(e)$$

 $lue{}$ Suppose we now find a set of trees such that for some lpha

$$\forall e \in E. \quad c_e \ge \frac{1}{\alpha} \sum_{\substack{i: \ e \in T_i}} \lambda_i C_i(e)$$

Then we have

$$\rho = \max_{e} \frac{f(e)}{c_{e}}$$

$$= \max_{e} \frac{\sum_{\substack{e \in T_{i} \\ e \in T_{i}}} \lambda_{i} D_{i}(e)}{c_{e}}$$

$$\leq \alpha \max_{e} \frac{\sum_{\substack{e \in T_{i} \\ e \in T_{i}}} \lambda_{i} D_{i}(e)}{\sum_{\substack{e \in T_{i} \\ e \in T_{i}}} \lambda_{i} C_{i}(e)}$$

$$\leq \alpha \max_{e} \max_{i} \sum_{\substack{c \in T_{i} \\ c_{i}(e)}} \Delta_{i}(e) \leq \alpha \rho^{*}$$

- Identify every edge in a tree with a path in G
- These paths can overlap
- lacksquare For tree T we get a mapping $P_T:E_T o E^+$

- Identify every edge in a tree with a path in G
- These paths can overlap
- For tree T we get a mapping $P_T : E_T \to E^+$

- Choose a set of pathtrees $\{T_i\}$ of G with combination λ
- Now route along the paths identified with edges. For $e \in E$

$$f(e) = \sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}(e_{T})}} D_{i}(e_{T})$$

- Choose a set of pathtrees $\{T_i\}$ of G with combination λ
- Now route along the paths identified with edges. For $e \in E$

$$f(e) = \sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}(e_{T})}} D_{i}(e_{T})$$

- Choose a set of pathtrees $\{T_i\}$ of G with combination λ
- Now route along the paths identified with edges. For $e \in E$

$$f(e) = \sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}(e_{T})}} D_{i}(e_{T})$$

- Choose a set of pathtrees $\{T_i\}$ of G with combination λ
- Now route along the paths identified with edges. For $e \in E$

$$f(e) = \sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}(e_{T})}} D_{i}(e_{T})$$

- Choose a set of pathtrees $\{T_i\}$ of G with combination λ
- lacksquare Now route along the paths identified with edges. For $e \in E$

$$f(e) = \sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}(e_{T})}} D_{i}(e_{T})$$

lacksquare Again suppose we now find a set of trees such that for some lpha

$$\forall e \in E. \quad c_e \ge \frac{1}{\alpha} \sum_i \lambda_i \sum_{\substack{e_{\mathsf{T}} \in \mathcal{T}_i: e \in P_i(e_{\mathsf{T}})}} C_i(e_{\mathsf{T}})$$

Then we have

$$\begin{split} \rho &= \max_{e} \frac{f(e)}{c_{e}} \\ &\leq \alpha \max_{e} \frac{\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}(e_{T})}} D_{i}(e_{T})}{\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ e \in P_{i}(e_{T})}} C_{i}(e_{T})} \\ &\leq \alpha \max_{e} \max_{i} \frac{D_{i}(e)}{C_{i}(e)} \leq \alpha \rho^{*} \end{split}$$

lacksquare Again suppose we now find a set of trees such that for some lpha

$$\forall e \in E. \quad c_e \ge \frac{1}{\alpha} \sum_i \lambda_i \sum_{\substack{e_{\mathsf{T}} \in \mathcal{T}_i: e \in P_i(e_{\mathsf{T}})}} C_i(e_{\mathsf{T}})$$

■ Then we have

$$\begin{split} \rho &= & \max_{\mathbf{e}} \frac{f(\mathbf{e})}{c_{\mathbf{e}}} \\ &\leq \alpha \max_{\mathbf{e}} \frac{\sum_{i} \lambda_{i} \sum_{\substack{\mathbf{e}_{T} \in T_{i}: \\ \mathbf{e} \in P_{i}(\mathbf{e}_{T})}}{\sum_{i} \lambda_{i} \sum_{\substack{\mathbf{e}_{T} \in T_{i}: \\ \mathbf{e} \in P_{i}(\mathbf{e}_{T})}} C_{i}(\mathbf{e}_{T})} \\ &\leq \alpha \max_{\mathbf{e}} \max_{i} \frac{D_{i}(\mathbf{e})}{C_{i}(\mathbf{e})} \leq \alpha \rho^{*} \end{split}$$

How do we find such a set of trees? How large is α ?

Primal Program

Let $\mathcal I$ be the exponentially large set of all pathtrees. We want to find the best trees with smallest α .

$$\begin{array}{ll} \min_{\alpha,\lambda} & \alpha \\ \text{s. t.} & \sum_{i \in \mathcal{I}} \lambda_i \sum_{\substack{e_T \in T_i: \\ (u,v) \in P_i(e_T)}} C_i(e_T) \leq \alpha c_{uv} \qquad \forall u,v \in V \\ & \sum_{i \in \mathcal{I}} \lambda_i = 1 \\ & \lambda \geq 0 \end{array}$$

We want to show that $\alpha \in \mathcal{O}(\log n)$

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$\begin{aligned} \max_{z,\mathcal{L}} \quad z \\ \text{s.t.} \quad & \sum_{u,v \in V} c_{uv} \ell_{uv} = 1 \\ & z \leq \sum_{e_T \in T_i} C_i(e_T) \sum_{(u,v) \in P_i(e_T)} \ell_{uv} \qquad \forall i \in \mathcal{I} \\ & \mathcal{L} \geq 0 \end{aligned}$$

If $z \in \mathcal{O}(\log n)$ then $\alpha \in \mathcal{O}(\log n)$ by strong duality

$$\begin{array}{ll} \max _{z,\mathcal{L}} & z \\ \text{s.t.} & \sum_{u,v \in V} c_{uv}\ell_{uv} = 1 \\ & z \leq \sum_{e_{\mathcal{T}} \in \mathcal{T}_i} C_i(e_{\mathcal{T}}) \sum_{(u,v) \in P_i(e_{\mathcal{T}})} \ell_{uv} \qquad \forall i \in \mathcal{I} \\ & \mathcal{L} \geq 0 \end{array}$$

- We interpret the $\ell_{\mu\nu}$ as edge lengths in G
- They define a shortest path metric $d_{\ell}(u, v)$
- For an edge e = (x, y) we write $d_{\ell}(e) := d_{\ell}(x, y)$

$$\begin{aligned} \max_{z,\mathcal{L}} \quad z \\ \text{s.t.} \quad & \sum_{u,v \in V} c_{uv} \ell_{uv} = 1 \\ & z \leq \sum_{e_T \in T_i} C_i(e_T) \underbrace{\sum_{(u,v) \in P_i(e_T)} \ell_{uv}}_{\forall i \in \mathcal{I}} \\ & \mathcal{L} \geq 0 \qquad \qquad \geq d_\ell(e_T) \end{aligned}$$

- We interpret the ℓ_{uv} as edge lengths in G
- They define a shortest path metric $d_{\ell}(u, v)$
- For an edge e = (x, y) we write $d_{\ell}(e) := d_{\ell}(x, y)$

$$egin{array}{ll} \max_{z,\mathcal{L}} & z \ & ext{s.t.} & \sum_{u,v \in V} c_{uv} \ell_{uv} = 1 \ & z \leq \sum_{e_T \in \mathcal{T}_i} C_i(e_T) d_\ell(e_T) & orall i \in \mathcal{I} \ & \mathcal{L} \geq 0 \end{array}$$

- We interpret the ℓ_{uv} as edge lengths in G
- They define a shortest path metric $d_{\ell}(u, v)$
- For an edge e = (x, y) we write $d_{\ell}(e) := d_{\ell}(x, y)$

$$\max_{z,\mathcal{L}} z$$
s.t.
$$\sum_{u,v \in V} c_{uv} \ell_{uv} = 1$$

$$z \leq \sum_{e_T \in T_i} C_i(e_T) d_\ell(e_T) \quad \forall i \in \mathcal{I}$$

$$\mathcal{L} \geq 0 \qquad \geq \min_{i \in \mathcal{I}} \cdots$$

- We interpret the ℓ_{uv} as edge lengths in G
- They define a shortest path metric $d_{\ell}(u, v)$
- For an edge e = (x, y) we write $d_{\ell}(e) := d_{\ell}(x, y)$

$$\begin{aligned} \max_{z,\mathcal{L}} \quad & z \\ \text{s.t.} \quad & \sum_{u,v \in V} c_{uv} \ell_{uv} = 1 \\ & z \leq \min_{i \in \mathcal{I}} \sum_{e_T \in T_i} C_i(e_T) d_\ell(e_T) \\ & \mathcal{L} \geq 0 \end{aligned}$$

- We interpret the ℓ_{uv} as edge lengths in G
- They define a shortest path metric $d_{\ell}(u, v)$
- For an edge e = (x, y) we write $d_{\ell}(e) := d_{\ell}(x, y)$

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$\begin{aligned} \max_{\mathcal{L}} \quad & \min_{i \in \mathcal{I}} \sum_{e_T \in \mathcal{T}_i} C_i(e_T) d_\ell(e_T) \\ \text{s.t.} \quad & \sum_{u,v \in V} c_{uv} \ell_{uv} = 1 \\ & \qquad \qquad \mathcal{L} \geq 0 \end{aligned}$$

Now suppose

$$\sum_{u,v\in V} c_{uv}\ell_{uv} = \beta > 0$$

 \blacksquare If we scale every length by $\frac{1}{\beta}$ our solution will change by $\frac{1}{\beta}$

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$\begin{aligned} \max_{\mathcal{L}} \quad & \min_{i \in \mathcal{I}} \sum_{e_T \in \mathcal{T}_i} C_i(e_T) d_\ell(e_T) \\ \text{s.t.} \quad & \left[\sum_{u,v \in V} c_{uv} \ell_{uv} = \mathbf{1} \right] \\ \mathcal{L} \geq 0 \end{aligned}$$

Now suppose

$$\sum_{u,v\in V} c_{uv}\ell_{uv} = \beta > 0$$

 \blacksquare If we scale every length by $\frac{1}{\beta}$ our solution will change by $\frac{1}{\beta}$

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$\begin{aligned} \max_{\mathcal{L}} \quad & \min_{i \in \mathcal{I}} \frac{\sum_{e_T \in \mathcal{T}_i} C_i(e_T) d_\ell(e_T)}{\sum_{u,v \in V} c_{uv} \ell_{uv}} \\ \text{s.t.} \quad & \mathcal{L} \geq 0 \end{aligned}$$

Now suppose

$$\sum_{u,v \in V} c_{uv} \ell_{uv} = \beta > 0$$

If we scale every length by $\frac{1}{\beta}$ our solution will change by $\frac{1}{\beta}$

Theorem (Tree Metric)

For our metric d_{ℓ} there exists a tree metric (V, M) with

$$\begin{aligned} d_{\ell}(u,v) &\leq M_{uv} & \forall u,v \in V \\ \sum_{u,v \in V} c_{uv} M_{uv} &\leq \mathcal{O}(\log n) \sum_{u,v \in V} c_{uv} d_{\ell}(u,v) \end{aligned}$$

$$\sum_{(x,y)\in E_T} C(x,y) M_{xy} = \sum_{(u,v)\in E} c_{uv} M_{uv}$$

$$\sum_{(x,y)\in E_T} C(x,y) M_{xy} = \sum_{(u,v)\in E} c_{uv} M_{uv}$$

$$\sum_{(x,y) \in E_T} C(x,y) M_{xy} = \sum_{(u,v) \in E} c_{uv} M_{uv}$$

$$\sum_{(x,y)\in E_T} C(x,y) M_{xy} = \sum_{(u,v)\in E} c_{uv} M_{uv}$$

$$\sum_{(x,y)\in E_T} C(x,y) M_{xy} = \sum_{(u,v)\in E} c_{uv} M_{uv}$$

$$\sum_{(x,y)\in E_T} C(x,y) M_{xy} = \sum_{(u,v)\in E} c_{uv} M_{uv}$$

Let \mathcal{I} be the exponentially large set of all pathtrees.

$$\begin{aligned} \max_{\mathcal{L}} \quad & \min_{i \in \mathcal{I}} \frac{\sum_{e_T \in \mathcal{T}_i} C_i(e_T) d_{\ell}(e_T)}{\sum_{u,v \in V} c_{uv} \ell_{uv}} \\ \text{s.t.} \quad & \mathcal{L} > 0 \end{aligned}$$

For any \mathcal{L} we know that for the minimizing tree T_i holds

$$\begin{split} \sum_{e_T \in T_i} C_i(e_T) d_\ell(e_T) &\leq \sum_{e_T \in T_i} C_i(e_T) M_{e_T} \\ &= \sum_{u,v \in V} c_{uv} M_{uv} \\ &\leq \mathcal{O}(\log n) \sum_{u,v \in V} c_{uv} d_\ell(u,v) \\ &\leq \mathcal{O}(\log n) \sum_{u,v \in V} c_{uv} \ell_{uv} \\ &\frac{\sum_{e_T \in T_i} C_i(e_T) d_\ell(e_T)}{\sum_{u,v \in V} c_{uv} \ell_{uv}} \leq \mathcal{O}(\log n) \end{split}$$

Primal Program

Let $\mathcal I$ be the exponentially large set of all pathtrees. We want to find the best trees with smallest α .

$$\begin{array}{ll} \min_{\alpha,\lambda} & \alpha \\ \text{s. t.} & \sum_{i \in \mathcal{I}} \lambda_i \sum_{\substack{e_T \in \mathcal{T}_i: \\ (u,v) \in P_i(e_T)}} C_i(e_T) \leq \alpha c_{uv} \qquad \forall u,v \in V \\ & \sum_{i \in \mathcal{I}} \lambda_i = 1 \\ & \lambda \geq 0 \end{array}$$

- There is a λ such that $\alpha \in \mathcal{O}(\log n)$
- Solving the LP is an $\mathcal{O}(\log n)$ -approximation
- But why are polynomially many trees enough?

Given

- \blacksquare An undirected Graph G = (V, E)
- **A** cost function $c: E \to \mathbb{R}^+$

Given

- \blacksquare An undirected Graph G = (V, E)
- **A** cost function $c: E \to \mathbb{R}^+$

Given

- \blacksquare An undirected Graph G = (V, E)
- **A** cost function $c: E \to \mathbb{R}^+$

Given

- \blacksquare An undirected Graph G = (V, E)
- **A** cost function $c: E \to \mathbb{R}^+$

Minimum Bisection Approximation

Given graph G = (V, E) and cost function $c : E \to \mathbb{R}^+$.

- 1 Interpret costs c(e) as capacities
- 2 Solve oblivious routing on G, obtaining trees T_i
- \blacksquare Find minimum tree bisections X_i for all trees T_i
- 4 Choose the X_i with lowest $c(\delta(X_i))$

We have to show

- \blacksquare What the X_i actually are
- An $\mathcal{O}(\log n)$ -approximation guarantee
- \blacksquare That we can find the X_i in polynomial time

Minimum Bisection Approximation

Given graph G = (V, E) and cost function $c : E \to \mathbb{R}^+$.

- 1 Interpret costs c(e) as capacities
- 2 Solve oblivious routing on G, obtaining trees T_i
- \blacksquare Find minimum tree bisections X_i for all trees T_i
- 4 Choose the X_i with lowest $c(\delta(X_i))$

We have to show

- What the X_i actually are
- An $\mathcal{O}(\log n)$ -approximation guarantee
- \blacksquare That we can find the X_i in polynomial time

- Given a spanning tree T of G with an edge $e_T \in E_T$
- Define a new cost function c_T using tree splits

$$c_T(e_T) = C(e_T)$$

$$c_T(\delta(S)) = \sum_{\substack{e_T \in E_T: e_T \in \delta(S)}} C(e_T)$$

- Given a spanning tree T of G with an edge $e_T \in E_T$
- Define a new cost function c_T using tree splits

$$c_T(e_T) = C(e_T) \qquad c_T(\delta(S)) = \sum_{\substack{e_T \in E_T: \\ e_T \in \delta(S)}} C(e_T)$$

- Given a spanning tree T of G with an edge $e_T \in E_T$
- Define a new cost function c_T using tree splits

$$c_T(e_T) = C(e_T)$$

$$c_T(\delta(S)) = \sum_{\substack{e_T \in E_T: e_T \in \delta(S)}} C(e_T)$$

For any spanning tree T and any $S \subseteq V$ we have

$$c(\delta(S)) \le c_T(\delta(S))$$

Let $\{T_i\}$ be a solution to the oblivious flow problem on G. Then for any $S \subseteq V$ we have

$$\sum_{i} \lambda_{i} c_{T_{i}}(\delta(S)) \leq \mathcal{O}(\log n) c(\delta(S))$$

■ Remember from the primal program that for all $u, v \in V$

$$\sum_{i} \lambda_{i} \sum_{\substack{e_{T} \in T_{i}: \\ (u,v) \in P_{i}(e_{T})}} C_{i}(e_{T}) \leq \mathcal{O}(\log n) c_{uv}$$

■ We sum up the inequalities for all $(u, v) \in \delta(S)$

Let $\{T_i\}$ be a solution to the oblivious flow problem on G. Then for any $S \subseteq V$ we have

$$\sum_{i} \lambda_{i} c_{T_{i}}(\delta(S)) \leq \mathcal{O}(\log n) c(\delta(S))$$

- We sum up the inequalities for all $(u, v) \in \delta(S)$
- This gives us

$$\sum_{i} \lambda_{i} \sum_{\substack{(u,v) \in \delta(S)}} \sum_{\substack{e_{\mathcal{T}} \in \mathcal{T}_{i}: \\ (u,v) \in P_{i}(e_{\mathcal{T}})}} C_{i}(e_{\mathcal{T}}) \leq \mathcal{O}(\log n) c(\delta(S))$$

■ We are done with the observation that

$$c_{\mathcal{T}_i}(\delta(S)) = \sum_{\substack{e_{\mathcal{T}} \in \mathcal{E}_{\mathcal{T}_i}: \\ e_{\mathcal{T}} \in \delta(S)}} C_i(e_{\mathcal{T}}) \leq \sum_{\substack{(u,v) \in \delta(S)}} \sum_{\substack{e_{\mathcal{T}} \in \mathcal{T}_i: \\ (u,v) \in P_i(e_{\mathcal{T}})}} C_i(e_{\mathcal{T}})$$

Minimum Bisection Approximation

Given graph G = (V, E) and cost function $c : E \to \mathbb{R}^+$.

- 1 Interpret costs c(e) as capacities
- 2 Solve oblivious routing on G, obtaining trees T_i
- \blacksquare Find minimum tree bisections X_i for all trees T_i
- 4 Choose the X_i with lowest $c(\delta(X_i))$

Let now X^* , X_i be the optimal solutions on G and the T_i . Then

$$\sum_{i} \lambda_{i} c(\delta(X_{i})) \leq \sum_{i} \lambda_{i} c_{T_{i}}(\delta(X_{i}))$$

$$\leq \sum_{i} \lambda_{i} c_{T_{i}}(\delta(X^{*}))$$

$$\leq \mathcal{O}(\log n) c(\delta(X^{*}))$$

- \blacksquare This also holds for the best X_i
- How to find the X_i ?