# HG changeset patch # User Markus Kaiser # Date 1406723074 -7200 # Node ID 33290e7a43e4dce351870890173dfad2d1ddc579 # Parent 4ec3b7cbe311f7138dda57a27cdc139d439895aa fix bisection picture diff -r 4ec3b7cbe311 -r 33290e7a43e4 minimum_bisection/paper/term_paper.tex --- a/minimum_bisection/paper/term_paper.tex Wed Jul 30 13:58:08 2014 +0200 +++ b/minimum_bisection/paper/term_paper.tex Wed Jul 30 14:24:34 2014 +0200 @@ -28,7 +28,7 @@ It satisfies the following two properties: \begin{description} \item[Capacity Constraint:] For all $e \in E$, we have $f_e \leq c_e$. - \item[Flow Conservation:] For all $v \in V \setminus \left\{ s, t \right\}$, we have + \item[Flow Conservation:] For all $v \in V \setminus \left\{ s, t \right\}$, we have \[\sum_{(u, v) \in E} f_{uv} = \sum_{(v, w) \in E} f_{vw}.\] \end{description} We denote $f_e \defeq f(e)$ for $e \in E$ and $f_{uv} \defeq f(u, v)$ for $u, v \in V$. @@ -369,7 +369,7 @@ See \cref{fig:sum_over_capacities}. \end{proof} -Combining all observations and lemmas now bounds the value of both linear programs logarithmically, directly following from the logaritmic bound of the tree metrics. +Combining all observations and lemmas now bounds the value of both linear programs logarithmically, directly following from the logarithmic bound of the tree metrics. \begin{lemma} The primal and dual linear program have a value of $\Oh(\log n)$. @@ -395,20 +395,17 @@ \section{Minimum Bisection} \label{sec:minimum_bisection} -\blindtext + -\subsection{Problem definition} -\label{sub:mb_problem} \begin{problem}[Minimum Bisection] - Given an undirected Graph $G = (V, E)$ and an edge-cost function $c : E \to \R^+$. + Given an undirected Graph $G = (V, E)$ and an edge-cost function $c : E \to \Rnn$. Find a set $S \subset V$ containing half the vertices with \structure{minimal split cost}. \end{problem} -\blindtext \begin{definition}[Tree Bisection] Given a spanning tree $T$ of $G$ with an edge $e_T \in E_T$. - We define a new cost function $c_T : E_T \to \R^+$ based on the tree splits induced by the edges of $T$. + We define a new cost function $c_T : E_T \to \Rnn$ based on the tree splits induced by the edges of $T$. The cost of a bisection $S$ is the sum of tree split costs of all tree edges cut by $S$. \begin{align} c_T(e_T) &= C(e_T)\\ @@ -417,8 +414,6 @@ The tree bisection of $T$ is an optimal solution of the minimum bisection problem with respect to the cost function $c_T$. \end{definition} -\blindtext - \begin{figure}[tb] \centering \begin{tikzpicture}[flow graph] @@ -426,14 +421,14 @@ \flowedges \begin{pgfonlayer}{background} - \node[draw=tumblue, fill=tumblue!20, thick, ellipse, fit=(c)(d)(g)(k)(j)(i)(e)(h), inner sep=3pt] (el) {}; + \node[draw=tumblue, fill=tumblue!20, thick, ellipse, fit=(n)(l)(m)(h)(e)(f), rotate=10, inner sep=-8pt] (el) {}; \end{pgfonlayer} \path (el) - ++ (-30:2.6) node {\structure{$S$}}; + ++ (-120:2.1) node {\structure{$S$}}; \begin{pgfonlayer}{marked} - \foreach \source/\dest in {b/j,f/c,f/e,m/e,l/h} + \foreach \source/\dest in {n/b,f/b,f/c,e/c,e/d,e/g,h/i} \draw [tree edge, tumorange] (\source.center) -- (\dest.center); \end{pgfonlayer} \end{tikzpicture} @@ -441,12 +436,9 @@ \label{fig:minimum_bisection} \end{figure} -\subsection{Approximation using oblivious routing} -\label{sub:mb_approx} - \begin{algorithm} \label{alg:minimum_bisection} - Given graph $G = (V, E)$ and cost function $c : E \to \R^+$. + Given graph $G = (V, E)$ and cost function $c : E \to \Rnn$. \begin{enumerate} \item Interpret costs $c(e)$ as capacities \item Solve oblivious routing on $G$, obtaining trees $T_i$ @@ -462,11 +454,8 @@ \end{align} \end{lemma} \begin{proof} - \blindtext \end{proof} -\blindtext - \begin{lemma} Let $\left\{ (T_i, \lambda_i) \mid i \in \Ih \right\}$ be a $\Oh(\log n)$-approximation to the oblivious flow problem. Then for any cut $S \subseteq V$ the convex combination of tree bisections is bounded above by the cost of $S$ times a logarithmic factor. @@ -494,7 +483,6 @@ \cref{alg:minimum_bisection} is an $\Oh(\log n)$ approximation algorithm for the minimum bisection problem. \end{theorem} \begin{proof} - \blindtext \begin{align} \sum_i \lambda_i c(\delta(X_i)) &\leq \sum_i \lambda_i c_{T_i}(\delta(X_i)) \\ &\leq \sum_i \lambda_i c_{T_i}(\delta(X^*)) \\