# HG changeset patch # User Markus Kaiser # Date 1400618237 -7200 # Node ID 349d3e5b7973720bee40cd0d27ca57235a0a3b7e # Parent 0924abe91f55fb963f2b4062144f5fe8d525cbb4 fix minor errors diff -r 0924abe91f55 -r 349d3e5b7973 minimum_bisection/presentation.tex --- a/minimum_bisection/presentation.tex Tue May 20 22:09:58 2014 +0200 +++ b/minimum_bisection/presentation.tex Tue May 20 22:37:17 2014 +0200 @@ -20,7 +20,7 @@ \item A \structure{capacity function} $c : E \to \R^+$ \item A source $s$ and a target $t$ \end{itemize} - \uncover<4->{Calculate the maximum possible \structure{flow} $f : E \to \R^+$ through $G$.} + \uncover<4->{Calculate a maximum possible \structure{flow} $f : E \to \R^+$ through $G$.} \end{problem} \centering @@ -45,7 +45,7 @@ \item A capacity function $c : E \to \R^+$ \item<2-> A \structure{demand function} $d : V^2 \to \R^+$ \end{itemize} - \uncover<3->{Calculate the flow $f$ with least \structure{congestion $\rho = \max_{e \in E}\frac{f_e}{c_e}$}.} + \uncover<3->{Calculate a flow $f$ with least \structure{congestion $\rho = \max_{e \in E}\frac{f_e}{c_e}$}.} \end{problem} \centering @@ -331,10 +331,7 @@ \begin{itemize} \item Identify every edge in a tree with a \structure{path} in $G$ \item These paths can \structure{overlap} - \item For tree $T$ we get a mapping $P$ - \begin{align} - P : E_T \to E^+ - \end{align} + \item For tree $T$ we get a mapping $P_T : E_T \to E^+$ \end{itemize} \vfill @@ -405,7 +402,9 @@ } \only<4-> { - \draw[demand edge, bend left=10] (l) edge node[flow demand, pos=0.2]{9} (i); + \begin{pgfonlayer}{demand} + \draw[demand edge, bend left=10] (l) edge node[flow demand, pos=0.2]{9} (i); + \end{pgfonlayer} \begin{pgfonlayer}{marked} \foreach \source/ \dest in {l/m,m/e,d/k,k/j,j/i} @@ -456,7 +455,7 @@ \only<2> { \begin{center} - \Large How do we find such a set of trees? How large is $\alpha$? + How do we find such a set of trees? How large is $\alpha$? \end{center} } \end{frame} @@ -692,10 +691,10 @@ \draw (n) node[above=0.1] {\structure{u}} - (m) node[below] {a} - (e) node[below] {b} + (m) node[below=0.05] {a} + (e) node[below=0.05] {b} (d) node[above=0.1] {c} - (c) node[below] {d} + (c) node[below=0.05] {d} (b) node[above=0.1] {\structure{v}}; \path @@ -791,8 +790,8 @@ \vfill \begin{itemize} - \item There is a $\structure{\lambda}$ such that $\alpha \in \Oh(\log n)$ - \item So out algorithm as an \alert{$\Oh(\log n)$ approximation} + \item There is a $\structure{\lambda}$ such that $\structure{\alpha \in \Oh(\log n)}$ + \item The algorithm as an \alert{$\Oh(\log n)$-approximation} \item But why are polynomially many trees enough? \end{itemize} \end{frame}