changeset 141:b0f1f2800dce

typo; correct date
author Markus Kaiser <markus.kaiser@in.tum.de>
date Mon, 02 Jun 2014 12:17:38 +0200
parents 586786c65297
children c7e07d48caee
files minimum_bisection/presentation.pdf minimum_bisection/presentation.tex
diffstat 2 files changed, 9 insertions(+), 7 deletions(-) [+]
line wrap: on
line diff
Binary file minimum_bisection/presentation.pdf has changed
--- a/minimum_bisection/presentation.tex	Sun Jun 01 17:29:24 2014 +0200
+++ b/minimum_bisection/presentation.tex	Mon Jun 02 12:17:38 2014 +0200
@@ -4,7 +4,7 @@
 \title{Oblivious Routing and Minimum Bisection}
 \subtitle{Seminar: Approximation Algorithms}
 \author{\href{mailto:markus.kaiser@in.tum.de}{Markus Kaiser}}
-\date{May 28, 2014}
+\date{June 3, 2014}
 
 \begin{document}
 \begin{frame}
@@ -116,6 +116,8 @@
         \item Routing along its unique paths is a feasible solution
     \end{itemize}
 
+    \vfill
+
     \centering
     \begin{tikzpicture}[flow graph]
         \flownodes
@@ -465,7 +467,7 @@
     \frametitle{Primal program}
 
     \begin{block}{Primal Program}
-        Let $\Ih$ be the exponenitally large set of \structure{all pathtrees}.\\
+        Let $\Ih$ be the exponentially large set of \structure{all pathtrees}.\\
         We want to find the best trees with smallest $\alpha$.
         \begin{alignat}{3}
             \min_{\structure{\alpha, \lambda}} \quad & \mathrlap{\structure{\alpha}}\\
@@ -486,7 +488,7 @@
     \frametitle{Dual Program}
 
     \begin{block}{Dual Program}
-        Let $\Ih$ be the exponenitally large set of \structure{all pathtrees}.
+        Let $\Ih$ be the exponentially large set of \structure{all pathtrees}.
         \begin{alignat}{3}
             \max_{\structure{z, \Ell}} \quad & \mathrlap{\structure{z}}\\ %
             \st \quad && \sum_{u, v \in V} c_{uv} \structure{\ell_{uv}} &= 1 \\
@@ -506,7 +508,7 @@
     \frametitle{Solution of the Dual Program}
 
     \begin{block}{Dual Program}
-        Let $\Ih$ be the exponenitally large set of \structure{all pathtrees}.
+        Let $\Ih$ be the exponentially large set of \structure{all pathtrees}.
         \begin{alignat}{3}
             \max_{\structure{z, \Ell}} \quad & \mathrlap{\structure{z}}\\ %
             \st \quad && \sum_{u, v \in V} c_{uv} \structure{\ell_{uv}} &= 1 \\
@@ -544,7 +546,7 @@
     \frametitle{Solution of the Dual Program}
 
     \begin{block}{Dual Program}
-        Let $\Ih$ be the exponenitally large set of \structure{all pathtrees}.
+        Let $\Ih$ be the exponentially large set of \structure{all pathtrees}.
         \only<1-2>{%
             \begin{alignat}{3}
                 \max_{\structure{\Ell}} \quad & \mathrlap{\min_{i \in \Ih}\sum_{e_T \in T_i} C_i(e_T) d_{\structure{\ell}}(e_T)}\\
@@ -757,7 +759,7 @@
     \frametitle{Value of the Dual Problem}
 
     \begin{block}{Dual Program}
-        Let $\Ih$ be the exponenitally large set of \structure{all pathtrees}.
+        Let $\Ih$ be the exponentially large set of \structure{all pathtrees}.
         \begin{alignat}{3}
             \max_{\structure{\Ell}} \quad & \min_{i \in \Ih}\frac{\sum_{e_T \in T_i} C_i(e_T) d_{\structure{\ell}}(e_T)}{\sum_{u, v \in V} c_{uv} \structure{\ell_{uv}}}\\
             \st \quad & \structure{\Ell} \geq 0
@@ -778,7 +780,7 @@
     \frametitle{Value of the Primal Program}
 
     \begin{block}{Primal Program}
-        Let $\Ih$ be the exponenitally large set of \structure{all pathtrees}.\\
+        Let $\Ih$ be the exponentially large set of \structure{all pathtrees}.\\
         We want to find the best trees with smallest $\alpha$.
         \begin{alignat}{3}
             \min_{\structure{\alpha, \lambda}} \quad & \mathrlap{\structure{\alpha}}\\